
Disposition : Titre

Compilation de protections logicielles contre les attaques par
injections de fautes

Advanced secu – M2 CySeC 2025

Damien Couroussé – CEA List Grenoble

damien.courousse@cea.fr

mailto:damien.courousse@cea.fr

Disposition : Titre et contenu

28/10/2022Exemple de pied de page (A modifier dans l'onglet "Insertion"/"En-tête/Pied" 2

bio

damien.courousse@cea.fr

Ingénieur de recherche HDR – CEA-List

• Logiciel embarqué
• Compilateurs

• Microarchitecture des processeurs

• Sécurité matérielle :

• attaques par canaux auxiliaires,

• par injections de fautes
• Méthodes formelles pour les analyses de

sécurité

mailto:damien.courousse@cea.fr

Disposition : Titre et contenu

Thématique sécurité : vérification de la robustesse d’un circuit aux injections de fautes

Design of Fault Injection Models Within Pre-silicon Security Methodologies

https://www.emploi.cea.fr 37787

Thématique sécurité : support de calcul pour le chiffrement homomorphe sur RISC-V
FPGA Prototyping of Fully Homomorphic Encryption on RISC-V Microprocessors

https://www.emploi.cea.fr 37898

Thématique cryptographie : implémentation matérielle d’algorithme postquantiques

Towards Efficient and Secure Keccak Acceleration: Optimizing Masked Hardware Against Side-
Channel Attacks

https://www.emploi.cea.fr 37905

Thématique architecture : design mémoires, architecture des processeurs et de la hiérarchie mémoire

Hybrid DRAM: Next gen ferroelectric memory for “normally-off / instant-on” embedded systems

28/10/2022Exemple de pied de page (A modifier dans l'onglet "Insertion"/"En-tête/Pied" 3

Internships 2025

https://www.emploi.cea.fr/offre-de-emploi/emploi-design-of-fault-injection-models-within-pre-silicon-security-methodologies-h-f_37787.aspx
https://www.emploi.cea.fr/offre-de-emploi/emploi-formal-analysis-of-fault-injection-countermeasures-within-a-secure-risc-v-processor-h-f_37898.aspx
../../Desktop/go

Disposition : Sommaire light

Astuce :Ce sommaire est sur deux colonnes, pour passer sur une colonne : Clic droit sur la zone de texte + « Format de la forme » / « Options de texte » / « Colonnes » = 1

1. (re-)Introduction to hardware

security

2. Workflow production for numerical

systems and the compiler

• A standard compiler doesn’t know

about security… illustrated

3. Securing compilers, illustration on

simple cases

4. Robustness analysis against fault

injection attacks

• Fault modelling

• Two main approaches: simulation,

formal verification.

5. Introduction to the hands-on

session: the verifyPin case study

agenda

28/10/2022Exemple de pied de page (A modifier dans l'onglet "Insertion"/"En-tête/Pied" 4

Disposition : Titre de section light

Hardware Security
Matters

5

Disposition : Titre et contenu

28/10/2022 6

Cybersecurity:
a challenge for the information society

Disposition : Titre seul

7

Physical attacks

[Cui & Rousley, 2017] Defeating Modern Secure Boot Using Second-Order Pulsed Electromagnetic Fault Injection. 10.5555/3154768.3154771

Highly effective against cryptographic implementations

Can leverage software vulnerabilities [Cui & Rousley, 2017]

Side-channel analysis Fault injection attacks

https://dl.acm.org/doi/10.5555/3154768.3154771

Disposition : Titre seul

8

Physical attacks, conceptually

• Highly effective against cryptography implementations

• Can leverage software vulnerabilities [BADFET, 2017]

Side-channel analysis Fault injection attacks

k? x

P=HW(f(k, x))

x

y=f(x) y’=ffaulted(x)

analysisanalysis

k!

Disposition : Titre seul

9

Physical attacks, conceptually

• Highly effective against cryptography implementations

• Can leverage software vulnerabilities [BADFET, 2017]

Side-channel analysis Fault injection attacks

k? x

P=HW(f(k, x))

x

y=f(x) y’=ffaulted(x)

analysisanalysis

k!

Disposition : Titre seul

[Yuce & al. 2018] Fault Attacks on Secure Embedded Software: Threats, Design and Evaluation. 10.1007/s41635-018-0038-1

[Casalino PhD, 2024] (On) The Impact of the Micro-architecture on Countermeasures against Side-Channel Attacks. HAL:tel-04573949
10

Physical attacks, behind the scenes

Side-channel analysis Fault injection attacks

[Yuce & al. 2018][Casalino PhD, 2024]

https://doi.org/10.1007/s41635-018-0038-1
https://theses.hal.science/tel-04573949

Disposition : Citation Bleu foncé

“

Astuce :Pour fermer les guillemets de fin de citation ajoutez 2 apostrophes à la fin de votre texte (touche [4] du clavier)

Hardware security matters…

(… and is challenging, but fun!)

Cybersecurity is not only a matter of
maths and crypto, it also involves the
physical nature of computing, via
observation and perturbation.

Takeway

Disposition : Titre de section light

Fault Injection Attacks in
the Cybersecurity
Landscape

12

Disposition : Titre seul

13

Hardware security in medieval times

Courtesy of Sylvain Guilley 2015, Télécom ParisTech - Secure-IC

Disposition : Vide

Fault Injection: Safety, Security

14

Mario 64 SpeedRunner Xbox360 reset glitch hack
https://free60.org/Hacks/Reset_Glitch_Hack

Safety Security

fault injection
natural /

non intentional
intentional

verification method probabilistic exhaustive

https://free60.org/Hacks/Reset_Glitch_Hack

Disposition : Titre seul

15

From the Secure Element to the IoT

Secure Element
• The HW and SW architecture is carried out by one main provider − and possibly

a few sub-contractors

• Limited connectivity and communication capabilities

• Logical attacks are considered, but are not the main threat.

• Considered secured; security evaluated by expensive certification processes
before market deployment

• Impacts of a security breach: mostly limited to the exploitation of the data
stored in the component.

IoT device
• Integration of many HW and SW components, mostly issued by (untrusted) third

parties.

• Lots of communication and sensing capabilities

• Known to be unsecured; lots of potential security vulnerabilities, certification is
still an open topic and available schemes (e.g. CSPN) are not widely adopted.

• Impacts of a security breach:

• Device level: usually low. On-device data have low value.
• Network/infrastructure level: high. The device can be used as a stepping

stone to attack other systems.
• Societal level: high. Discredits the use of technology.

Dacs, WhiteTimberwolf [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)]

NEWCAS 2019

https://commons.wikimedia.org/wiki/File:SmartCardPinout.svg

Disposition : Titre seul

16

Fault injection Target

• Real life attack
• Xbox360 reset glitch hack (2011) [1]

• Allows unsigned code execution

[1] https://free60project.github.io/wiki/Reset_Glitch_Hack

Reset Glitch Hack (RGH) is a hardware modification which allows you to run

unsigned code, mods, game backups, and homebrew. The hack relies

on a vulnerability in the hardware found by GliGli that is triggered by

sending a reset pulse to the processor at a specific moment, resulting in a

power glitch that causes a bootloader hash check to return "valid" no matter

what you have flashed in place of the stock bootloader. The timing of when

and how long the pulse should be sent is dependent on the console and it

may take some tweaking until it "glitches" and boots.

https://consolemods.org/wiki/Xbox_360:RGH

https://free60project.github.io/wiki/Reset_Glitch_Hack
https://consolemods.org/wiki/Xbox_360:RGH

Disposition : Titre seul

17

Fault injection Target

• Real life attack
• Xbox360 reset glitch hack (2011) [1]

• Allows unsigned code execution

[1] https://free60project.github.io/wiki/Reset_Glitch_Hack/

Reset Glitch Hack (RGH) is a hardware modification which allows you to run

unsigned code, mods, game backups, and homebrew. The hack relies

on a vulnerability in the hardware found by GliGli that is triggered by

sending a reset pulse to the processor at a specific moment, resulting in a

power glitch that causes a bootloader hash check to return "valid" no matter

what you have flashed in place of the stock bootloader. The timing of when

and how long the pulse should be sent is dependent on the console and it

may take some tweaking until it "glitches" and boots.

https://consolemods.org/wiki/Xbox_360:RGH

https://consolemods.org/wiki/Xbox_360:RGH

Disposition : Titre et contenu

18

Fault injection Target

• Real life attack

• Xbox360 reset glitch hack (2011) [1]

• Allows unsigned code execution

• Targets evolution

• 8 bits AVR micro controller (2011) [2]

• 32 bits dualcore ARM Cortex A9 (2019) [3]

• BCM2837 32 bits quadcore ARM Cortex (2019) A53 [4]

• Mobile devices [5]

[1] https://free60project.github.io/wiki/Reset_Glitch_Hack/

[2] Balasch, J. et al, "An In-depth and Black-box Characterization of the Effects of Clock Glitches on 8-bit MCUs.“, 2011 FDTC

[3] Proy, J. et al, "Studying EM Pulse Effects on Superscalar Microarchitectures at ISA Level.“, 2019 CoRR

[4] Trouchkine, et al. "Fault Injection Characterization on Modern CPUs.“, 2019 WISTP

[5] “Physical Fault Injection and Side-Channel Attacks on Mobile Devices : A Comprehensive Analysis”, Computers & Security (2021).

https://doi.org/10.1016/j.cose.2021.102471

https://doi.org/10.1016/j.cose.2021.102471

Disposition : Titre et contenu

10/09/2023MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 19

What to Protect?
State of the Art: Security Properties

Fetch Decode Execute

I-MEM

Memory
Write

back

D-MEM

Disposition : Titre et contenu

10/09/2023MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 20

What to Protect?
State of the Art: Security Properties

Fetch Decode Execute

I-MEM

Memory
Write

back

D-MEM

• Data integrity

• Code authenticity / integrity

• Control-flow integrity

• Direct branches / calls

• Indirect branches / calls

• Branchless instructions sequences
(a.k.a. basic blocks)

• Execution of all the
instructions
(e.g. no skip)

• In correct order

Disposition : Titre et contenu

A simple loop code:

10/09/2023MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 21

Problem: faults targeting control signals

Fetch Decode Execute

I-MEM

Memory
Write

back

D-MEM

loop:
addi t0, t0, #-1
bne t0, zero, loop

Fault on instruction decodebeq

Disposition : Titre et contenu

A simple loop code:

10/09/2023 22

Problem: faults targeting control signals

Fetch Decode Execute

I-MEM

Memory
Write

back

D-MEM

loop:
addi t0[n], t0[n-1], #-1
bne t0[n], zero, loop

Fault on forwarding

Register bank

t0[n-1]

Forwarding

Disposition : Titre et contenu

10/09/2023MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 23

What to Protect?
State of the Art: Security Properties

Fetch Decode Execute

I-MEM

Memory
Write

back

D-MEM

• Data integrity

• Code authenticity / integrity

• Control-flow integrity

• Direct branches / calls

• Indirect branches / calls

• Branchless instructions sequences
(a.k.a. basic blocks)

• Execution of all the
instructions
(e.g. no skip)

• In correct order

• Control Signals Integrity

Disposition : Citation Bleu foncé

“

Astuce :Pour fermer les guillemets de fin de citation ajoutez 2 apostrophes à la fin de votre texte (touche [4] du clavier)

Fault injection attacks increase the
attack surface of embedded systems,
and require protections down to the
processor microarchitecture.

Takeway

Disposition : Titre de section light

Workflow production
for numerical systems
the role of the compiler

Disposition : Titre seul

26

Towards the production of secure digital systems

source

program

source

program

source

circuit (RTL)

source

circuit (RTL)

compilercompiler

FE ME BE binary

program

binary

program

design flowdesign flow

librarieslibraries

librarieslibraries circuitcircuit

s
o
ft

w
a
re

h
a
rd

w
a
re circuit model

countermeasures are applied

at every abstraction level,

from software to silicon

effective security in

the implementation

Disposition : Titre seul

29

Towards the production of secure digital systems

compilercompilersource

program

source

program

FE ME BE binary

program

binary

program

design flowdesign flow

verificationverification

librarieslibraries

source

circuit (RTL)

source

circuit (RTL)

librarieslibraries

circuit modelcircuit model

circuitcircuit

s
o
ft

w
a
re

h
a
rd

w
a
re

user

inputs

hardening

tools

hardened

artefacts

security

verification

evaluation

Disposition : Citation Bleu foncé

“

Astuce :Pour fermer les guillemets de fin de citation ajoutez 2 apostrophes à la fin de votre texte (touche [4] du clavier)

The compiler sits between the developer
and the final, concrete product. You must
consider carefully it’s impact on
countermeasures.

(synthesis tools: same story!)

Takeway

Disposition : Titre de section light

Compilers vs. Security

32

Disposition : Titre et contenu

Duties: assurance of functional
equivalence between source code and
machine code

• “functional” / “functionality” is usually not
precisely defined

• Side effects?

• Determinism of time behaviour? (real time
execution)

• Lazy evaluation?

• No formal assurance

• Except few works, such as CompCert

• Correctness by construction?

• The source code written by the developper
is not always valid

33

Compiler duties & objectives

Objectives: optimise one or several

performance criteria

• Execution time

• Resources: e.g. memory consumption

• Energy consumption, power consumption

• There is no complete criterion for

optimality, and no convergence

• Nature of the algorithm used

• Relation to architecture / micro-architecture

• Data

Disposition : Titre et contenu

Rights

• Reorganise contents of the target program, as long as program

semantics is preserved

• Machine instructions, basic blocs

• Select the best translation for a source code operation / instruction

• Remove parts of the program, as long as the program functionality

is considered to be preserved (i.e. the computation does not

participate in producing the program results)

Some classical optimisation passes:

• dead code elimination

• global value numbering

• common-subexpression elimination

• strength reduction

• loop strength reduction, loop simplification, loop-invariant code

motion

34

Compiler rights

LLVM’s Analysis and Transform

Passes, the 2016/06/30

• 40 analysis passes
• 56 transformation/optimisation

passes

• 10 utilitary passes

• … backends, etc.

http://llvm.org/docs/Passes.html

Disposition : Titre et contenu

28/10/2022Exemple de pied de page (A modifier dans l'onglet "Insertion"/"En-tête/Pied" 35

Compiler rights

Rights

• Reorganise contents of the target program, as long as program

semantics is preserved

• Machine instructions, basic blocs

• Select the best translation for a source code operation / instruction

• Remove parts of the program, as long as the program functionality

is considered to be preserved (i.e. the computation does not

participate in producing the program results)

Some classical optimisation passes:

• dead code elimination

• global value numbering

• common-subexpression elimination

• strength reduction

• loop strength reduction, loop simplification, loop-invariant code

motion

LLVM’s Analysis and Transform

Passes, the 2016/06/30

• 40 analysis passes
• 56 transformation/optimisation

passes

• 10 utilitary passes

• … backends, etc.

http://llvm.org/docs/Passes.html

Disposition : Titre seul

28/10/2022Exemple de pied de page (A modifier dans l'onglet "Insertion"/"En-tête/Pied" 36

A must read

Ken Thompson
Communications of the ACM

August 1984,
vol 28 number 8

Kenneth Lane Thompson is an American pioneer of

computer science. Thompson worked at Bell Labs for

most of his career where he designed and implemented

the original Unix operating system. He also invented the B

programming language, the direct predecessor to the C

language, and was one of the creators and early

developers of the Plan 9 operating system. Other notable

contributions included his work on regular expressions and

early computer text editors QED and ed, the definition of

the UTF-8 encoding, and his work on computer chess that

included the creation of endgame tablebases and the

chess machine Belle. Since 2006, Thompson has worked

at Google, where he co-developed the Go language.

Disposition : Titre seul

28/10/2022Exemple de pied de page (A modifier dans l'onglet "Insertion"/"En-tête/Pied" 37

Reflections on trusting trust.
Insertion silencieuse de trojans

source
Compilateur

Étage 1
prog. machine

+ trojan

Compilateur étage 1:

Compilateur
source

+ trojan

Compilateur
standard

Compilateur
étage 1

Trojan
code

Disposition : Titre seul

28/10/2022Exemple de pied de page (A modifier dans l'onglet "Insertion"/"En-tête/Pied" 38

Reflections on trusting trust.
Insertion silencieuse de trojans

Compilateur
étage 2

Compilateur
source

prog. source
Compilateur

Étage 1
prog. machine

+ trojan

Compilateur
source

+ générateur
de trojan

Compilateur
standard

Compilateur
étage 1

Compilateur
étage 2

Trojan
code

Trojan
code
generator

Disposition : Titre seul

28/10/2022Exemple de pied de page (A modifier dans l'onglet "Insertion"/"En-tête/Pied" 39

A must read

Communications of the ACM
August 1984,

vol 28 number 8

The moral is obvious. You can't trust code that you did not totally create

yourself. (Especially code from companies that employ people like me.)

No amount of source-level verification or scrutiny will protect you

from using untrusted code. In demonstrating the possibility of this

kind of attack, I picked on the C compiler. I could have picked on any
program-handling program such as an assembler, a loader, or even

hardware microcode. As the level of program gets lower, these

bugs will be harder and harder to detect. A well-installed microcode

bug will be almost impossible to detect.

The moral is obvious. You can't trust code that you did not totally create

yourself. (Especially code from companies that employ people like me.)

No amount of source-level verification or scrutiny will protect you

from using untrusted code. In demonstrating the possibility of this

kind of attack, I picked on the C compiler. I could have picked on any
program-handling program such as an assembler, a loader, or even

hardware microcode. As the level of program gets lower, these

bugs will be harder and harder to detect. A well-installed microcode

bug will be almost impossible to detect.

Disposition : Titre seul

28/10/2022Exemple de pied de page (A modifier dans l'onglet "Insertion"/"En-tête/Pied" 40

Another must read

IEEE Security & Privacy Workshops
2015

Disposition : Titre seul

28/10/2022Exemple de pied de page (A modifier dans l'onglet "Insertion"/"En-tête/Pied" 41

Disposition : Titre seul

28/10/2022Exemple de pied de page (A modifier dans l'onglet "Insertion"/"En-tête/Pied" 42

Disposition : Titre seul

28/10/2022Exemple de pied de page (A modifier dans l'onglet "Insertion"/"En-tête/Pied" 43

Disposition : Titre seul

28/10/2022Exemple de pied de page (A modifier dans l'onglet "Insertion"/"En-tête/Pied" 44

Compiler interference

⚫ Optimization effects

− Preserve code functionality,

− But do not preserve non-functional properties (e.g., execution time, etc.)

⚫ Several abstraction levels

Disposition : Titre seul

45

Compiler interference

⚫ Optimization effects

− Preserve code functionality,

− But do not preserve non-functional properties (e.g., execution time, etc.)

⚫ Several abstraction levels

[1] S. Tuan Vu, « Optimizing Property-Preserving Compilation », Doctoral thesis, Sorbonne University, 2021.

Disposition : Titre seul

46

Compiler abstraction levels

⚫ Optimization effects

− Preserve code functionality,

− But do not preserve non-functional properties (e.g., execution time, etc.)

⚫ Several abstraction levels

[1] S. Tuan Vu, « Optimizing Property-Preserving Compilation », Doctoral thesis, Sorbonne University, 2021.

[2] https://releases.llvm.org/14.0.0/docs/WritingAnLLVMBackend.html

IR → SelectionDAG → MachineDAG → MachineInstr → MCInst

https://releases.llvm.org/14.0.0/docs/WritingAnLLVMBackend.html

Disposition : Titre seul

47

Compiler abstraction levels

⚫ Optimization effects

− Preserve code functionality,

− But do not preserve non-functional properties (e.g., execution time, etc.)

⚫ Several abstraction levels

⚫ Structural issues

⚫ Some representations miss some information useful for security (but

not needed for functionality).

⚫ E.g. SSA does not describe instruction ordering.

Disposition : Citation Bleu foncé

“

Astuce :Pour fermer les guillemets de fin de citation ajoutez 2 apostrophes à la fin de votre texte (touche [4] du clavier)

A (standard) compiler only cares
about functional properties,
it may will break security features.

Do not trust the compiler!

Takeway

Disposition : Titre de section light

Compilers and
security

Illustrated with simple examples

49

Disposition : Titre seul

50

Insertion of dummy instructions

• Inserting a static procedure for
desynchronisation

• Also possible (even better) with a timer
and an interrupt handler

Coron, J. S., & Kizhvatov, I. An efficient method for random delay generation in embedded software. In Cryptographic Hardware and
Embedded Systems-CHES 2009 (pp. 156-170). Springer (2009).
Coron, J.S., Kizhvatov, I. Analysis and improvement of the random delay countermeasure of CHES 2009. In: CHES. pp. 95–109. Springer
(2010).

Disposition : Titre seul

51

Insertion of dummy instructions

Dump of assembler code for function noiseCoron:

0x0000859c <+0>: push {r4, lr}

0x000085a0 <+4>: ldr r4, [pc, #28] ; <noiseCoron+40>

0x000085a4 <+8>: ldr r3, [r4] ; r3  nbIt_coron

0x000085a8 <+12>: cmp r3, #160 ; nbIt_coron ?= N

0x000085ac <+16>: bne 0x85b4 <noiseCoron+24>

0x000085b0 <+20>: bl 0x8524 <genNoiseCoron>

0x000085b4 <+24>: ldr r3, [r4]

0x000085b8 <+28>: add r3, r3, #1 ; nbIt_coron++

0x000085bc <+32>: str r3, [r4]

0x000085c0 <+36>: pop {r4, pc}

0x000085c4 <+40>: andeq r0, r1, r0, lsr r8

End of assembler dump.

Compiled with -Os:

Disposition : Titre seul

52

Insertion of dummy instructions

Dump of assembler code for function noiseCoron:

0x0000859c <+0>: push {r4, lr}

0x000085a0 <+4>: ldr r4, [pc, #28] ; <noiseCoron+40>

0x000085a4 <+8>: ldr r3, [r4] ; r3  nbIt_coron

0x000085a8 <+12>: cmp r3, #160 ; nbIt_coron ?= N

0x000085ac <+16>: bne 0x85b4 <noiseCoron+24>

0x000085b0 <+20>: bl 0x8524 <genNoiseCoron>

0x000085b4 <+24>: ldr r3, [r4]

0x000085b8 <+28>: add r3, r3, #1 ; nbIt_coron++

0x000085bc <+32>: str r3, [r4]

0x000085c0 <+36>: pop {r4, pc}

0x000085c4 <+40>: andeq r0, r1, r0, lsr r8

End of assembler dump.

Compiled with -Os:

???

Disposition : Titre seul

53

Insertion of dummy instructions

Dump of assembler code for function noiseCoron:

0x0000859c <+0>: push {r4, lr}

0x000085a0 <+4>: ldr r4, [pc, #28] ; <noiseCoron+40>

0x000085a4 <+8>: ldr r3, [r4] ; r3  nbIt_coron

0x000085a8 <+12>: cmp r3, #160 ; nbIt_coron ?= N

0x000085ac <+16>: bne 0x85b4 <noiseCoron+24>

0x000085b0 <+20>: bl 0x8524 <genNoiseCoron>

0x000085b4 <+24>: ldr r3, [r4]

0x000085b8 <+28>: add r3, r3, #1 ; nbIt_coron++

0x000085bc <+32>: str r3, [r4]

0x000085c0 <+36>: pop {r4, pc}

0x000085c4 <+40>: andeq r0, r1, r0, lsr r8

End of assembler dump.

Compiled with -Os:

???

???

Disposition : Titre seul

54

Insertion of dummy instructions

Dump of assembler code for function noiseCoron:

0x0000859c <+0>: push {r4, lr}

0x000085a0 <+4>: ldr r4, [pc, #60] ; <noiseCoron+72>

0x000085a4 <+8>: ldr r3, [r4]

0x000085a8 <+12>: cmp r3, #160 ; nbIt_coron ?= N

0x000085ac <+16>: bne 0x85b4 <noiseCoron+24>

0x000085b0 <+20>: bl 0x8524 <genNoiseCoron>

0x000085b4 <+24>: ldr r3, [pc, #44] ; <noiseCoron+76>

0x000085b8 <+28>: ldr r2, [r4]

0x000085bc <+32>: ldr r1, [r3, r2, lsl #2]

0x000085c0 <+36>: mov r3, #0 ; i  0

0x000085c4 <+40>: cmp r3, r1 ; i ?= nbIt_Coron

0x000085c8 <+44>: beq 0x85d8 <noiseCoron+60>

0x000085cc <+48>: add r3, r3, #1 ; i  i+1

0x000085d0 <+52>: nop

0x000085d4 <+56>: b 0x85c4 <noiseCoron+40>

0x000085d8 <+60>: add r2, r2, #1 ; nbIt_Coron++

0x000085dc <+64>: str r2, [r4]

0x000085e0 <+68>: pop {r4, pc}

0x000085e4 <+72>: andeq r0, r1, r4, asr r8

0x000085e8 <+76>: andeq r0, r1, r12, asr r8

End of assembler dump.

Compiled with -Os:

Disposition : Titre seul

55

Insertion of dummy instructions

Dump of assembler code for function noiseCoron:

0x0000859c <+0>: push {r4, lr}

0x000085a0 <+4>: ldr r4, [pc, #56] ; <noiseCoron+68>

0x000085a4 <+8>: ldr r3, [r4]

0x000085a8 <+12>: cmp r3, #160 ; 0xa0

0x000085ac <+16>: bne 0x85b4 <noiseCoron+24>

0x000085b0 <+20>: bl 0x8524 <genNoiseCoron>

0x000085b4 <+24>: ldr r3, [pc, #40] ; <noiseCoron+72>

0x000085b8 <+28>: ldr r2, [r4]

0x000085bc <+32>: ldr r1, [r3, r2, lsl #2]

0x000085c0 <+36>: mov r3, #0

0x000085c4 <+40>: cmp r3, r1

0x000085c8 <+44>: beq 0x85d4 <noiseCoron+56>

0x000085cc <+48>: add r3, r3, #1

0x000085d0 <+52>: b 0x85c4 <noiseCoron+40>

0x000085d4 <+56>: add r2, r2, #1

0x000085d8 <+60>: str r2, [r4]

0x000085dc <+64>: pop {r4, pc}

0x000085e0 <+68>: andeq r0, r1, r0, asr r8

0x000085e4 <+72>: andeq r0, r1, r8, asr r8

End of assembler dump.

Compiled with -Os:

Disposition : Titre seul

56

Random precharging

Protection against power analysis in a Hamming Distance model

• Example: Leakage on value v is charged in memory or in a
register:

insn_k
mem <- v

insn_k
reg <- v

• Random precharging: the variable assignment is preceded
by an assignment using a mask m, unknown to the attacker:

insn_k
mem <- m
mem <- v

insn_k
reg <- m
reg <- v

0x0000 <+0>: mov r3, #0

0x0004 <+4>: ldr r2, [pc, #28] ; 0x28 <subBytes+40>

0x0008 <+8>: ldr r0, [pc, #28] ; 0x2c <subBytes+44>

0x000c <+12>: ldrb r1, [r3, r2]

0x0010 <+16>: ldrb r1, [r0, r1]

0x0014 <+20>: strb r1, [r3, r2] ; leaky instruction

0x0018 <+24>: add r3, r3, #1

0x001c <+28>: cmp r3, #16

0x0020 <+32>: bne 0xc <subBytes+12>

0x0024 <+36>: bx lr

0x0028 <+40>: andeq r0, r0, r0

0x002c <+44>: andeq r0, r0, r0

Compiled with -Os:

Leakage: HD(v,k)

Leakage:
HD(v,m) = HW(v+m)

#1

#2

#1

#2

Disposition : Titre seul

57

Random precharging

Compiled with -Os:

0x0000 <+0>: push {r4, r5, r6, r7, r8, lr}
0x0004 <+4>: mov r4, #0
0x0008 <+8>: ldr r5, [pc, #48] ; <subBytes+64>
0x000c <+12>: ldr r7, [pc, #48] ; <subBytes+68>
0x0010 <+16>: ldrb r6, [r5, r4]
0x0014 <+20>: bl <rand>
0x0018 <+24>: and r6, r6, #255 ; 0xff
0x001c <+28>: ldrb r3, [r7, r6]
0x0020 <+32>: and r0, r0, #15
0x0024 <+36>: strb r0, [r5, r4]
0x0028 <+40>: strb r3, [r5, r4]
0x002c <+44>: add r4, r4, #1
0x0030 <+48>: cmp r4, #16
0x0034 <+52>: bne 0x10 <subBytes+16>
0x0038 <+56>: pop {r4, r5, r6, r7, r8, lr}
0x003c <+60>: bx lr
0x0040 <+64>: andeq r0, r0, r0
0x0044 <+68>: andeq r0, r0, r0

Disposition : Titre seul

58

Random precharging

Compiled with -O1:

0x0000 <+0>: push {r4, r5, r6, r7, r8, lr}
0x0004 <+4>: mov r4, #0
0x0008 <+8>: ldr r6, [pc, #48] ; <subBytes+64>
0x000c <+12>: ldr r7, [pc, #48] ; <subBytes+68>
0x0010 <+16>: ldrb r5, [r6, r4]
0x0014 <+20>: and r5, r5, #255 ; 0xff
0x0018 <+24>: bl <rand>
0x001c <+28>: and r0, r0, #15
0x0020 <+32>: strb r0, [r6, r4]
0x0024 <+36>: ldrb r3, [r7, r5]
0x0028 <+40>: strb r3, [r6, r4]
0x002c <+44>: add r4, r4, #1
0x0030 <+48>: cmp r4, #16
0x0034 <+52>: bne 0x10 <subBytes+16>
0x0038 <+56>: pop {r4, r5, r6, r7, r8, lr}
0x003c <+60>: bx lr
0x0040 <+64>: andeq r0, r0, r0
0x0044 <+68>: andeq r0, r0, r0

Instruction reordering

introduces leakage

Disposition : Citation claire

“

Astuce :Pour fermer les guillemets de fin de citation ajoutez 2 apostrophes à la fin de votre texte (touche [4] du clavier)

Huh??

So…

Let’s avoid compiler

optimisations!

Disposition : Titre seul

60

Compiling with -O0

• All program variables are moved onto the
stack before anything else

• Register spilling (> -O0): the register value
is moved to the stack

=> Information leakage!

• Bigger code size -> larger attack surface

=> More potential vulnerabilies

Dump of assembler code for function subBytes:
0x84e4 <+0>: push {r11} ; (str r11, [sp, #-4]!)
0x84e8 <+4>: add r11, sp, #0
0x84ec <+8>: sub sp, sp, #12
0x84f0 <+12>: mov r3, #0
0x84f4 <+16>: str r3, [r11, #-8]
0x84f8 <+20>: b 0x8530 <subBytes+76>
0x84fc <+24>: ldr r2, [pc, #68] ; <subBytes+100>
0x8500 <+28>: ldr r3, [r11, #-8]
0x8504 <+32>: add r3, r2, r3
0x8508 <+36>: ldrb r3, [r3]
0x850c <+40>: ldr r2, [pc, #56] ; <subBytes+104>
0x8510 <+44>: ldrb r2, [r2, r3]
0x8514 <+48>: ldr r1, [pc, #44] ; <subBytes+100>
0x8518 <+52>: ldr r3, [r11, #-8]
0x851c <+56>: add r3, r1, r3
0x8520 <+60>: strb r2, [r3]
0x8524 <+64>: ldr r3, [r11, #-8]
0x8528 <+68>: add r3, r3, #1
0x852c <+72>: str r3, [r11, #-8]
0x8530 <+76>: ldr r3, [r11, #-8]
0x8534 <+80>: cmp r3, #15
0x8538 <+84>: bls 0x84fc <subBytes+24>
0x853c <+88>: sub sp, r11, #0
0x8540 <+92>: pop {r11} ; (ldr r11, [sp], #4)
0x8544 <+96>: bx lr
0x8548 <+100>:andeq r0, r1, r4, lsl #15

Disposition : Titre de section light

Securing
compilation

28/10/2022Exemple de pied de page (A modifier dans l'onglet "Insertion"/"En-tête/Pied" 61

Disposition : Titre seul

28/10/2022Exemple de pied de page (A modifier dans l'onglet "Insertion"/"En-tête/Pied" 62

Compilation of a Countermeasure Against
Instruction-Skip Faults

Fault model: instruction skips [Moro et al., 2014]

Can be protected by the duplication of idempotent instructions [Moro et al., 2014]

push {r4, r7, lr}
add r7, sp, #4
...
bl byte_compare
cmp r0, #1 nop
bne .BB2
b .BB1

cmp r0, #1 cmp r0, #1
cmp r0, #1

add r1, r1, r2 mv rnew, r1
mv rnew, r1
add r1, rnew, r2
add r1, rnew, r2

idempotent

non-idempotent

[Moro, 2014] Formal verification of a software countermeasure against instruction skip attacks. doiXXX
[Barry, 2016] Compilation of a Countermeasure Against Instruction-Skip Fault Attacks. doiXXX

Disposition : Titre seul

28/10/2022Exemple de pied de page (A modifier dans l'onglet "Insertion"/"En-tête/Pied" 63

Compilation of a Countermeasure Against
Instruction-Skip Faults

Fault model: instruction skips [Moro et al., 2014]

Can be protected by the duplication of idempotent instructions [Moro et al., 2014]

cmp r0, #1 cmp r0, #1
cmp r0, #1

add r1, r2, r3 add r1, r2, r3
add r1, r2, r3

idempotent

idempotent

F
E

F
E

In
s
tr

u
c
ti
o

n

S
e

le
c
ti
o

n

R
e

g
is

te
r

A
llo

c
a

ti
o

n

M
E

M
E

T
ra

n
s
f.

p
a

s
s
e

s

In
s
tr

u
c
ti
o

n

D
u
p

lic
a

ti
o

n

In
s
tr

u
c
ti
o

n

S
c
h
e

d
u
lin

g

C
o

d
e

E
m

is
s
io

n

passes added

passes modified

(6 cycles)

ldr r3, [r1, #4]
ldr r3, [r1, #4]
add r0, r1, r2
add r0, r1, r2

ldr r3, [r1, #4]
add r0, r1, r2
ldr r3, [r1, #4]
add r0, r1, r2

(5-6 cycles)

instruction

scheduling

Disposition : Titre seul

28/10/2022Exemple de pied de page (A modifier dans l'onglet "Insertion"/"En-tête/Pied" 64

Compilation of a Countermeasure Against
Instruction-Skip Faults

Fault model: instruction skips [Moro et al., 2014]

Can be protected by the duplication of idempotent instructions [Moro et al., 2014]

cmp r0, #1 cmp r0, #1
cmp r0, #1

add r1, r2, r3 add r1, r2, r3
add r1, r2, r3

idempotent

idempotent

F
E

F
E

In
s
tr

u
c
ti
o

n

S
e

le
c
ti
o

n

R
e

g
is

te
r

A
llo

c
a

ti
o

n

M
E

M
E

T
ra

n
s
f.

p
a

s
s
e

s

In
s
tr

u
c
ti
o

n

D
u
p

lic
a

ti
o

n

In
s
tr

u
c
ti
o

n

S
c
h
e

d
u
lin

g

C
o

d
e

E
m

is
s
io

n

passes added

passes modified

[Moro, 2014] Formal verification of a software countermeasure against instruction skip attacks. doiXXX
[Barry, 2016] Compilation of a Countermeasure Against Instruction-Skip Fault Attacks. doiXXX

Disposition : Titre seul

28/10/2022Exemple de pied de page (A modifier dans l'onglet "Insertion"/"En-tête/Pied" 65

Compilation of a Countermeasure Against
Instruction-Skip Faults

Experimental results:

• Reduced overhead wrt. original implementation (execution time, code size)

• Generalisation of the protection scheme, supported by compilation parameters:

• M: Nb of faults

• size: Fault width

• Target functions

• Fine-grained countermeasure application, to selected functions, reduces the execution
overhead below ×1.23 and size overheads below ×1.12 [Barry, 2017]

• Formally verified by RobustB / LIP6 (IDROMEL project) [Belleville, 2021]

But not effective in practice!

• Experimental evaluation on a laser bench

• The target platform (STM32) is intrinsically vulnerable to laser FI

• Thin fault coverage:

• protects instructions only against skip, but not against byte corruption (hypothetical fault

model);

• no data protection

• Software countermeasures, since not effective, increase the attack surface and often lead
to easier exploitation of fault injection.

[Moro, 2014] Formal verification of a software countermeasure against instruction skip attacks. doiXXX
[Barry, 2016] Compilation of a Countermeasure Against Instruction-Skip Fault Attacks. doiXXX

[Barry, 2017] XXX
[Belleville, 2021] XXX

Disposition : Titre seul

28/10/2022Exemple de pied de page (A modifier dans l'onglet "Insertion"/"En-tête/Pied" 66

