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* Logiciel embarqué
« Compilateurs
» Microarchitecture des processeurs
« Seécurité matérielle :
« attaques par canaux auxiliaires,
« par injections de fautes
« Méthodes formelles pour les analyses de
sécurité
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Internships 2025 &

Thématique sécurité : vérification de la robustesse d’un circuit aux injections de fautes
Design of Fault Injection Models Within Pre-silicon Security Methodologies
https://www.emploi.cea.fr [J 37787

Thématique sécurité : support de calcul pour le chiffrement homomorphe sur RISC-V
FPGA Prototyping of Fully Homomorphic Encryption on RISC-V Microprocessors
https://www.emploi.cea.fr [ 37898

Thématique cryptographie : implémentation matérielle d’algorithme postquantiques
Towards Efficient and Secure Keccak Acceleration: Optimizing Masked Hardware Against Side-
Channel Attacks

https://www.emploi.cea.fr [1 37905
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agenda

1. (re-)Introduction to hardware « Two main approaches: simulation,
security formal verification.

2. Workflow production for numerical 5. Introduction to the hands-on
systems and the compiler session: the verifyPin case study

« A standard compiler doesn’t know
about security... illustrated

3. Securing compilers, illustration on
simple cases

4. Robustness analysis against fault
injection attacks

« Fault modelling
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Hardware Security

m Matters




Cybersecurity:
a challenge for the information society

Once there were two “mental chess™ experts
who had become tired of their pastime. “Let’s
play ‘Mental Poker,’ for variety” suggested
one. “Sure” said the other. “'Just let me deal!” \- s

7 33
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Physical attacks

Side-channel analysis Faultinjection attacks

Highly effective against cryptographic implementations
Can leverage software vulnerabilities [Cui & Rousley, 2017]

[Cui & Rousley, 2017] Defeating Modern Secure Boot Using Second-Order Pulsed Electromagnetic Fault Injection. 10.5555/3154768.3154771


https://dl.acm.org/doi/10.5555/3154768.3154771

Physical attacks, conceptually

Side-channel analysis Faultinjection attacks
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Physical attacks, conceptually

Side-channel analysis Faultinjection attacks
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Physical attacks, behind the scenes

Side-channel analysis Faultinjection attacks
Application, OS, Firmware
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[Casalino PhD, 2024] P U T [Yuce & al. 2018]

[Yuce & al. 2018] Fault Attacks on Secure Embedded Software: Threats, Design and Evaluation. 10.1007/s41635-018-0038-1 10
[Casalino PhD, 2024] (On) The Impact of the Micro-architecture on Countermeasures against Side-Channel Attacks. HAL:tel-04573949



https://doi.org/10.1007/s41635-018-0038-1
https://theses.hal.science/tel-04573949

Takeway

“ Hardware security matters...

(.- and is challenging, but fun!)

Cybersecurity is not only a matter of
maths and crypto, it also involves the
physical nature of computing, via
observation and perturbation.
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Hardware security in medieval times

powerline analysis
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Fault Injection: Safety, Security

COSMIC RAY FLIPS BIT, ASSISTS
MARIO 64 SPEEDRUNNER

«‘:“"3 [ e

7D "*ﬂi "n
DOTA _TeaBag changing leading byte uf-
height from C5 to C4
Mario 64 SpeedRunner Xbox360 reset glitch hack
https://free60.org/Hacks/Reset_Glitch_Hack
Safety Security
ST natural / : :
fault injection intentional

non intentional

verification method probabilistic exhaustive

:



https://free60.org/Hacks/Reset_Glitch_Hack

From the Secure Element to the loT

Secure Element

*  The HW and SW architecture is carried out by one main provider — and possibly  ¢1—vcc
a few sub-contractors

* Limited connectivity and communication capabilities C2-RST
° Logical attacks are considered, but are not the main threat. C3—-CLK

° Considered secured; security evaluated by expensive certification processes Ca—
before market deployment

° Impacts of a security breach: mostly limited to the exploitation of the data
stored in the component.

loT device
° Integration of many HW and SW components, mostly issued by (untrusted) third
parties.

* Lots of communication and sensing capabilities

°*  Known to be unsecured; lots of potential security vulnerabilities, certificationis
still an open topic and available schemes (e.g. CSPN) are not widely adopted.

° Impacts of a security breach:

Device level: usually low. On-device data have low value.

* Networkl/infrastructure level: high. The device can be used as a stepping
stone to attack other systems.

* Societal level: high. Discredits the use of technology.

NEWCAS 2019


https://commons.wikimedia.org/wiki/File:SmartCardPinout.svg

Fault injection Target

Real life attack
* Xbox360reset glitch hack (2011) [1]

Allows unsigned code execution

Reset Glitch Hack (RGH) is a hardware modification which allows you to run
unsigned code, mods, game backups, and homebrew. The hack relies
on a vulnerability in the hardware found by GliGli that is triggered by
sending a reset pulse to the processor at a specific moment, resulting in a
power glitch that causes a bootloader hash check to return "valid" no matter
what you have flashed in place of the stock bootloader. The timing of when
and how long the pulse should be sent is dependent on the console and it
may take some tweaking until it "glitches" and boots.
https://consolemods.org/wiki/Xbox_360:RGH

16
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Fault injection Target

Real life attack

* Xbox360reset glitch hack (2011) [1]

Allows unsigned code execution

Reset Glitch Hack (RGH) is a hardware modification which allows you to run
unsigned code, mods, game backups, and homebrew. The hack relies
on a vulnerability in the hardware found bv GliGli that is triaaered bv

sending a reset pulse to the processor a
power glitch that causes a bootloader hash
what you have flashed in place of the stock
and how long the pulse should be sent is de

may take some tweaking until it "glitches" ai Bblaaém oLwmbky

https://consolemods.org/wiki/Xbox_360:RGt €CIIN XELl HE COoBriall | bl

[1] https://free60project.github.io/wiki/Reset_Glitch_Hac
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1i
mr
bl
1i

r3, r29
compute_hash
rd, #'9°
r3, r3il
post_out

r5, exl4

"rmoymm”

# POST_O

30ecb
Nonem cropa,
ecnu

addi ri, rl, arg 70
addi rd, r3@, 0x39

5 _memcmp # compare hashes
cmpwi cré, r3, @ # <-- GLITCH_HERE

XeLl BEPHbIN

beq cr6, loc_78D4

] L
FEIE
1i rd,
mr r3, r3l -
bl post_out # POST_OUT = '@xAD', hash error| |1i rs,
bl halt 1i rd, @

mr r3, r28
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Fault injection Target

Real life attack
* Xbox360reset glitch hack (2011) [1]

Allows unsigned code execution y

Targets evolution

* 8 bits AVR micro controller (2011) [2]

® 32 bits dualcore ARM Cortex A9 (2019) [3]

°* BCM2837 32 bits quadcore ARM Cortex (2019) A53 [4]
* Mobile devices [5]

[1] https://free60project.github.io/wiki/Reset_Glitch_Hack/

[2] Balasch, J. et al, "An In-depth and Black-box Characterization of the Effects of Clock Glitches on 8-bit MCUs.“, 2011 FDTC
[3] Proy, J. et al, "Studying EM Pulse Effects on Superscalar Microarchitectures at ISA Level.“, 2019 CoRR

[4] Trouchkine, et al. "Fault Injection Characterization on Modern CPUs.“, 2019 WISTP

[5] “Physical Fault Injection and Side-Channel Attacks on Mobile Devices : A Comprehensive Analysis”, Computers & Security (2021).
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What to Protect?
State of the Art: Security Properties

o). {85

@ MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 10/09/2023 19




What to Protect?

State of the Art: Security Properties

O Data integrity

v Code authenticity / integrity

' Control-flow integrity
Direct branches / calls
Indirect branches / calls

Branchless instructions sequences
(a.k.a. basic blocks)

Execution of all the
instructions
(e.g. no skip)

In correct order

Decode

Execute

MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks

TASER 2023

D-MEM

A

Memory

10/09/2023

Write '
back
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A
Problem: faults targeting control signals

A simple loop code:

loop:
addi teo, to, #-1
bre t0, zero, loop

beq « Fault on instruction decode

D-MEM

=0 el
Decode Execute Memo UGB
Y back

@ MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 10/09/2023 21




Problem: faults targeting control signals

A simple loop code:

loop:
addi to[n], to[n-1], #-1
bne £6fn}, zero, loop

to[n-1] < Fault on forwarding

D-MEM
sl= 9
Decode Execute Memo Write
Y back
i Forwarding

[ Register bank ]

A

—



What to Protect?

State of the Art: Security Properties

O Data integrity

v Code authenticity / integrity

' Control-flow integrity
Direct branches / calls
Indirect branches / calls

Branchless instructions sequences
(a.k.a. basic blocks)

Execution of all the
instructions
(e.g. no skip)

In correct order

Control Signals Integrity
Decode

=3

\
Ik‘-. 1;{

B

Execute

MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks

TASER 2023
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D-MEM

A

Memory

D
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Write '
back
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Takeway

“ Fault injection attacks increase the
attack surface of embedded systems,
and require protections down to the
processor microarchitecture.



Workflow production
B for numerical systems

the role of the compiler




Towards the production of secure digital systems

countermeasures are applied
at every abstraction level,
from software to silicon

software

hardware

effective security in
the implementation

& v
e ™
T source compiler
program
FE||ME||BE| | kioas
pr 1 m
libraries -
\ J
&) p N y
_LcirsagzclfT ; design flow circuit model
X
libraries - N & t%’
. J
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Towards the production of secure digital systems

software

hardware

user hardening hardened security
inputs tools artefacts verification
a ]
| & &—
T source compiler —
program _ verification
FE||ME||BE| ||  binary |
program
libraries w >
k y,
= P ‘
' source =2 design flow . |
circuit (RTL) circuit model I J
v 8
J
libraries circuit ‘{» evalu#
. J

@Cummnn Criteria
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Takeway

“ The compiler sits between the developer
and the final, concrete product. You must
consider carefully it’s impact on
countermeasures.

(synthesis tools: same story!)
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m Compilers vs. Security




Compiler duties & objectives

Duties: assurance of functional

Objectives: optimise one or several

equivalence between source code and performance criteria

machine code

*  “functional”/ “functionality” is usually not
precisely defined °

Side effects?

Determinism of time behaviour? (real time
execution) o

Lazy evaluation?

* No formal assurance
Except few works, such as CompCert

* Correctness by construction?

The source code written by the developper
is not always valid

Execution time
Resources: e.g. memory consumption
Energy consumption, power consumption

There is no complete criterion for
optimality, and no convergence

Nature of the algorithm used
Relation to architecture / micro-architecture
Data

33



Compiler rights

Rights

Reorganise contents of the target program, as long as program
semantics is preserved

Machine instructions, basic blocs
Select the best translation for a source code operation / instruction

Remove parts of the program, as long as the program functionality
is considered to be preserved (i.e. the computation does not
participate in producing the program results)

Some classical optimisation passes:

dead code elimination

global value numbering
common-subexpression elimination
strength reduction

loop strength reduction, loop simplification, loop-invariant code
motion

LLVM’s Analysis and Transform
Passes, the 2016/06/30

* 40 analysis passes
* 56 transformation/optimisation

passes
* 10 utilitary passes
* ... backends, etc.

34
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Compiler rights

Rights

° Reorganise contents of the target program, as long as program
semantics is preserved

Machine instructions, basic blocs

. Select the best translation for a source code operation / instruction

is considered to be preserved (i.e. the computation does not
participate in producing the program results)

Some classical optimisation passes: 00

° dead code elimination *A

*  global value numbering
° common-subexpression elimination (e

*  strength reduction v
° loop strength reduction, loop s (cation, loop-invariant code

motion &\

Exemple de pied de page (A modifier dans l'onglet "Insertion"/"En-téte/Pied"
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° Remove parts of the program, as long as the program functionality e()

N

LLVM’s Analysis and Transform
Passes, the 2016/06/30

* 40 analysis passes
* 56 transformation/optimisation

passes
* 10 utilitary passes
* ... backends, etc.

28/10/2022
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A must read

TURING AWARD LECTURE

Reflections on Trusting Trust

To what extent should one trust a statement that a program is free of Trojan
horses? Perhaps it is more important to trust the people who wrote the

software.

KEN THOMPSON

INTRODUCTION
[ thank the ACM for this award. [ can't help but feel
that I am receiving this honor for timing and serendip-
ity as much as technical merit. UNIX" swept into popu-
larity with an industry-wide change from central main-
frames to autonomous minis. | suspect that Daniel Bob-
row [1] would be here instead of me if he could not
afford a PDP-10 and had had to “settle” for a POP-11.
Moreover, the current state of UNIX is the result of the
labors of a large number of people.

There is an old adage, “Dance with the one that
brought you,” which means that [ should talk about

programs. [ would like to present to you the cutest
program | ever wrote. | will do this in three stages and
try to bring It together at the end.

STAGE 1

In college, before video games, we would amuse our-
selves by posing programming exercises, One of the
favoriles was to write the shortest self-reproducing pro-
gram. Since this is an exercise divorced from reality,
the usual vehicle was FORTRAN, Actually, FORTRAN
was the language of choice for the same reason that

R, I . Ol R et LT T, LA

Ken Thompson
Communicationsof the ACM
August 1984,

vol 28 number 8

Kenneth Lane Thompson is an American pioneer of
computer science. Thompson worked at Bell Labs for
most of his career where he designed and implemented
the original Unix operating system. He also invented the B
programming language, the direct predecessor to the C
language, and was one of the creators and early
developers of the Plan 9 operating system. Other notable
contributions included his work on regular expressions and
early computer text editors QED and ed, the definition of
the UTF-8 encoding, and his work on computer chess that
included the creation of endgame tablebases and the
chess machine Belle. Since 2006, Thompson has worked
at Google, where he co-developed the Go language.

28/10/2022 36



Reflections on trusting trust.
Insertion silencieuse de trojans

Compilateur
Etage 1

prog. machine

source .
+ trojan
Compilateur , _
Compilateur Compilateur
source .
_ standard étage 1
+ trojan
Compilateurétage 1:
compile(s) compile(s)
char =s; char =s;
| |
> f{match(s, “pattern”)) | Trojan
| compile(*bug”);
st code

@ Exemple de pied de page (A modifier dans l'onglet "Insertion"/"En-téte/Pied"
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37



Reflections on trusting trust.

Insertion silencieuse de trojans

2. SoUrce Compilateur
PrOg. Etage 1

Compilateur Compilateur
source étage 2

Compilateur

prog. machine
+ trojan

étage 1
Compilateur
source Compilateur Compilateur
+ générateur standard étage 2
de trojan
compile(s) compile(s)
char =s; char »s;

{

if(match(s, "patten”)) {
compile("bug");
return;

Exemple de pied de page (A modifier dans l'onglet "Inserti

if(match(s, “pattem1”)) {  Trojan

compile ("bug1’);

return;
|

code

if(match(s, “pattem 2°)}|  Trojan

compile (“bug 27);

return;

code
generator

28/10/2022
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A must read

TURING AWARD LECTURE

Reflections on Trusting Trust

To what extent should one trust a statement that a program is free of Trojan
horses? Perhaps it is more important to trust the people who wrote the
software.

Communicationsof the ACM
August 1984,
vol 28 number 8

The moral is obvious. You can't trust code that you did not totally create
yourself. (Especially code from companies that employ people like me.)
No amount of source-level verification or scrutiny will protect you
from using untrusted code. In demonstrating the possibility of this
kind of attack, | picked on the C compiler. | could have picked on any
program-handling program such as an assembler, a loader, or even
hardware microcode. As the level of program gets lower, these
INTRODUCTION ogams. UGS Will be harder and harder to detect. A well-installed microcode

[ thank the ACM for this award. I can't help but feel program

that [ am recelving this honor for timing and serendip- try mbﬂil bug will be almost impossible to detect.

KEN THOMPSON

ity as much as technical merit. UNIX" swept into popu-

larity with an industry-wide change from central main-

frames to autonomous minis. | suspect that Daniel Bob-
row [1] would be here instead of me if he could not
afford a PDP-10 and had had to “settle” for a PDP-11.
Moreover, the current state of UNIX is the result of the
labors of a large number of people.

There is an old adage, "Dance with the one that
brought you," which means that I should talk about

STAGE 1

In college, before video games, we would amuse our-
selves by posing programming exercises. One of the
favoriles was to write the shortest self-reproducing pro-
gram. Since this is an exercise divorced from reality,
the usual vehicle was FORTRAN, Actually, FORTRAN
was the language of choice for the same reason that

R, I . Ol R et LT T, LA
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Another must read

The Correctness-Security Gap in Compiler Optimization

Vijay D’Silva
Google Inc.
San Francisco, CA

Abstract—There is a significant body of work devoted to
testing, verifying, and certifying the correctness of optimizing
compilers. The focus of such work is to determine if source
code and optimized code have the same functional semantics.
In this paper, we introduce the correctness-security gap, which
arises when a compiler optimization preserves the functionality
of but violates a security guarantee made by source code.
We show with concrete code examples that several standard
optimizations, which have been formally proved correct, in-
habit this correctness-security gap. We analyze this gap and
conclude that it arises due to techniques that model the state
of the program but not the state of the underlying machine.
We propose a broad research programme whose goal is to
identify, understand, and mitigate the impact of security errors
introduced by compiler optimizations. Our proposal includes
research in testing, program analysis, theorem proving, and the
development of new, accurate machine models for reasoning
about the impact of compiler optimizations on security.

I. REFLECTIONS ON TRUSTING COMPILERS

Security critical code is heavily audited and tested, and in
some cases, even furnmllz\ verified. Security concerns have

Mathias Payer
Purdue University
West Lafayette, IN

mpayer@purdue.edu

IEEE Security & Privacy Workshops

Dawn Song
University of California, Berkeley
Berkeley, CA
dawnsong @ cs.berkeley.edu

key from memory before retuming to the caller. Scrubbing
is performed to avoid the key persisting in memory and
eventually being discovered by an attacker or being captured
in a memory dump.

crypt () {
key = 0xCODE; // read key
// work with the secure key
key = 0x0; // scrub memory
}

The variable key is local to crypt (). In compiler
optimization terminology, the assignment key = 0x0 is
a dead store because key is not read after that assignment.
Dead store elimination will remove this statement in order
to improve efficiency by reducing the number of assembler
instructions in the compiled code. Dead store elimination
is performed by default in GCC if optimization is turned
on [20]. This optimization is sound and has been proved
formally correct using different techniques [7], [34].

e why the optimization is problematic, consider a

T .
moditier aans rongiet “inseruon/"En tete/r'leo

28/10/2022

2015

40



Formal veritication of a Realistic Compiler

By Xavier Leroy

Communications of the ACM, Vol. 52 No. 7, Pages 107-115
10.1145/1538788.1538814

Comments

vewas: B [ @& B B SHAaRE =T & @ = & B B8

This paper reports on the development and formal verification (proof of semantic preservation) of CompCert,
1 compiler from Clight (a large subset of the C programming language) to PowerPC assembly code, using the
Coq proof assistant both for programming the compiler and for proving its correctness. Such a verified
compiler is useful in the context of critical software and its formal verification: the verification of the compiler
guarantees that the safety properties proved on the source code hold for the executable compiled code as well.

I.:lh_ L [il .[-Ill‘

1. Introduction

Can vou trust your compiler? Compilers are generally assumed to be semantically transparent: the compiled

e oo e o . Laamiy ] i ; o Yauagiiiim T e \
optimizing compilers—are complex programs that perform complicated symbolic transformations. Despite
intensive testing, bugs in compilers do occur, causing the compilers to crash at compile-time or—much worse
—to silently generate an incorrect executable for a correct source program.

41



Dead Store Elimination

#include <string>
using std::string;

#include <memory>

// The specifics of this function are
// not important for demonstrating this
const string getPasswordFromUser() const;

bool isPasswordCorrect() {
bool isPasswordCorrect = false;
string Password("password");

if (Password == getPasswordFromUser()) {
isPasswordCorrect = true:

}

// This line is removed from the optimized code
// even though it secures the code by wiping

// the password from memory.

memset (Password, 0, sizeof(Password));

return isPasswordCorrect;

From the GCC mailing list, 2002

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8537
9




From: "Joseph D. Wagner" <wagnerjd@prodigy.net>

To: <fwlgcc.gnu.org>,
<gcc-bugs@gcc.gnu.org>,
<gcc-prsfgcc.gnu.org>,
<nobody@gcc.gnu.org>,
<wagnerijd@prodigy.net>,
<gcc-gnatsf@gcc.gnu.org>
e
Subject: RE: optimization/8537: Optimizer Removes Code Necessary for Security
Date: Sun, 17 Nowv 2002 08:59:53

Direct quote from:
"If the compiler produces valid assembly code that does not correctly
execute the input source code, that is a compiler bug."

So to all you naysayers out there who claim this is a programming error
or poor coding, YES, IT IS A BUG!

From the GCC mailing list, 2002
s://gcc. ' i7id=8537

43



Compiler interference

« Optimization effects

— Preserve code functionality,

— But do not preserve non-functional properties(e.g., execution time, etc.)

o Several abstraction levels

Exemple de pied de page (A modifier dans l'onglet "Insertion"/"En-téte/Pied"
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Compiler interference

« Optimization effects

— Preserve code functionality,

— But do not preserve non-functional properties(e.g., execution time, etc.)

o Several abstraction levels

Source
Code AST or IR
— Front-end —»

Binary

Middle-end

IR

Code

—» Back-end ——

FIGURE 3.1: Cnmpnnents of a three—phase cnmpﬂer.

C -

C Frontend

XB6 Backend

Foartran =

Fartran Frantend

Ada

Ada Frontend

Optimizer

. ________________
Common /

PowerPC Backend

ARM Backend

g [1]S. Tuan Vu, « Optimizing Property-Presening Compilation », Doctoral thesis, Sorbonne University, 2021.

— XB6

- PowerPC

— ARM
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Compiler abstraction levels

o Optimization effects

— Preserve code functionality,

— But do not preserve non-functional properties(e.g., execution time, etc.)

o Several abstraction levels

Source Egnzry
Code AST or IR . IR ode
— Front-end — > Middle-end —— Back-end ——

FIGURE 3.1: Components of a th;ge’pﬁﬁse compiler.

IR — SelectionDAG — MachineDAG — Machinelnstr — MClnst

(2] '

[11 S. Tuan Vu, « Optimizing Property-Presening Compilation », Doctoral thesis, Sorbonne University, 2021.



https://releases.llvm.org/14.0.0/docs/WritingAnLLVMBackend.html

Compiler abstraction levels

Optimization effects

— Preserve code functionality,

— But do not preserve non-functional properties(e.g., execution time, etc.)

Several abstraction levels

Structural issues

« Some representations miss some information useful for security (but
not needed for functionality).

« E.g. SSA does not describe instruction ordering.
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Takeway

“ A (standard) compiler only cares
about functional properties,

it may will break security features.

Do not trust the compiler!
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lllustrated with simple examples

Compilers and
m security




Insertion of dummy instructions

* |nserting a static procedure for
desynchronisation

void noiseCoron{void)

{

w/

void subBytes f(void)
{

size t 1;
if(nbIt_Coron == N} {
. . genMoiseCoron(];
int 1;

for(i = 0; 1<15; 1+=4)

/* random delay */
i

{ B
3> CORON() ; B

ctateliio] — sbox[ state[ito] 1; whllfii-c table d[nbIt Coronl) {
state[i+1] = shox[ statel[i+1] 1: } g
state[1+2] = sbox[ statel[1+2] 1;
state[1+2] = sbox[ state[i1+3] ] nbIt Coron++;

} i r

}
}

* Also possible (even better) with a timer
and an interrupt handler

Coron, J. S., & Kizhvatoy, I. An efficient method for random delay generation in embedded software. In Cryptographic Hardware and
Embedded Systems-CHES 2009 (pp. 156-170). Springer (2009).
Coron, J.S., Kizhvatoy, I. Analysis and improvement of the random delay countermeasure of CHES 2009. In: CHES. pp. 95-109. Springer
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Insertion of dummy instructions

void noiseCoron{void)

1

}

size t 1;
if(nbIt_Coron == N) {
genNoiseCoron();

i . :J 30 e

while(i < table_d[nbIt_Coron]) {
1++;

}

nbIt Coront+;

Compiled with -Os:

Dump of assembler code for function noiseCoron:

0x0000859c <+0>:
0x000085a0 <+4>:
0x000085a4 <+8>:
0x000085a8 <+12>:
0x000085ac <+16>:
0x000085b0 <+20>:
0x000085b4 <+24>:
0x000085b8 <+28>:
0x000085bc <+32>:
0x000085c0 <+36>:
0x000085c4 <+40>:
End of assembler dump.

push
ldr
Idr
cmp
bne
bl
ldr
add
str
pop
andeq

{r4, Ir}

r4, [pc, #28] ; <noiseCoron+40>
r3, [r4] ; r3 € nblt_coron
r3, #160 ; nbIt coron?= N
0x85b4 <noiseCoron+24>
0x8524 <genNoiseCoron>
r3, [r4]

r3, r3, #1 ; nblt_coron++
r3, [r4]

{r4, pc}

rO, r1, rO, Isrr8
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Insertion of dummy instructions

void noiseCoron{void)

1

}

size t 1;
if(nbIt Coron == N) {
genNoiseCoron();

while(1 < table_d[nbIt Coronl) {
1++;
¥

nbIt Coront+;

Compiled with -Os:

Dump of assembler code for function noiseCoron:

0x0000859c <+0>: push {r4, Ir}

0x000085a0 <+4>: ldr r4, [pc, #28] ; <noiseCoron+40>
0x000085a4 <+8>: ldr r3, [r4] ; r3 € nblt_coron
0x000085a8 <+12>: cmp r3, #160 ; nbIt_coron?= N
0x000085ac <+16>: bne 0x85b4 <noiseCoron+24>
0x000085b0 <+20>: bl 0x8524 <genNoiseCoron>
0x000085b4 <+24>: ldr r3, [r4]

0x000085b8 <+28>: add r3, r3, #1 ; nbIt _coron++
0x000085bc <+32>: str r3, [r4]

0x000085c0 <+36>: pop {r4, pc}

0x000085c4 <+40>: andeq 0, r1, r0, Isr r§|

End of assembler dump.

2?2
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Insertion of dummy instructions

Compiled with -Os:

-{mid noiseCoron(void) Dump of assembler code for function noiseCoron:
size t ij 0x0000859c <+0>: push {r4, Ir}
it 0x000085a0 <+4>: Idr r4, [pc, #28] ; <noiseCoron+40>
0x000085a4 <+8>: ldr r3, [r4] ; r3 € nblt_coron
1= delay ¥ 0x000085a8 <+12>: cmp r3, #160 ; nblt_coron?= N
wilely < ranle dintEt toranl] 1 0x000085ac <+16>: bne 0x85b4 <noiseCoron+24>
} ' ??? 0x000085b0 <+20>: bl 0x8524 <genNoiseCoron>
} nbIt Coron++; 0x000085b4 <+24>: ldr r3, [r4]
0x000085b8 <+28>: add r3, r3, #1 ; nbIt _coron++
0x000085bc <+32>: str r3, [r4]
0x000085c0 <+36>: pop {r4, pc}
0x000085c4 <+40>: andeq 0, r1, r0, Isr r§|

End of assembler dump.
??7?
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Insertion of dummy instructions

Compiled with -Os:

void noiseCoron{void) Dump of assembler code for function noiseCoron:

1 et 0x0000859c <+0>: push {r4, Ir}
if(nbIt_Coron == N) { 0x000085a0 <+4>: Idr r4, [pc, #60]  ; <noiseCoron+72>
genNoiseCoron(); 0x000085a4 <+8>: |dr r3, [r4]
i S e 0x000085a8 <+12>:cmp r3, #160 ; nbIt_coron ?= N
i=0; 0x000085ac <+16>: bne 0x85b4 <noiseCoron+24>
Mialell SRR MIHEtenend) | 0x000085b0 <+20>: bl 0x8524 <genNoiseCoron>
: asm("nop;"); 0x000085b4 <+24>:|dr r3, [pc, #44] ; <noiseCoron+76>
0x000085b8 <+28>:ldr r2, [r4]
X nbIt_Coront+; 0x000085bc <+32>: Idr rl, [r3, r2, Isl #2]

0x000085c0 <+36>: mov
0x000085c4 <+40>:cmp
0x000085c8 <+44>: beq
0x000085cc <+48>: add
0x000085d0 <+52>:
0x000085d4 <+56>:b
0x000085d8 <+60>: add
0x000085dc <+64>: str
0x000085e0 <+68>: pop
0x000085e4 <+72>:andeq
0x000085e8 <+76>:andeq
End of assembler dump.

r3, #0 ;€0
r3, ri ;i ?= nbIt_Coron
0x85d8 <noiseCoron+60>
r3, r3, #1 ;i € i+1

nop

0x85c4 <noiseCoron+40>
r2, r2, #1 ; nbIt_Coron++
r2, [r4]

{r4, pc}

rO, r1, r4, asr r8

r0, r1, r12, asrr8
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Insertion of dummy instructions

Compiled with -Os:

void noiseCoron(void) Dump of assembler code for function noiseCoron:
b e b 0x0000859¢c <+0>: push {r4, Ir}
if(nbIt_Coren == N) { 0x000085a0 <+4>: Idr r4, [pc, #56] ; <noiseCoron+68>
genNoiseCoronl);
0x000085a4 <+8>: Idr r3, [r4]
p i ‘detEy 0x000085a8 <+12>:cmp r3, #160 ; O0xa0
1=0;. 0x000085ac <+16>: bne 0x85b4 <noiseCoron+24>
while(1 <= table_d[nbIt_Coron]) { _
14+; 0x000085b0 <+20>: bl 0x8524 <genNoiseCoron>
: asm(""); 0x000085b4 <+24>:ldr r3, [pc, #40] ; <noiseCoron+72>
0x000085b8 <+28>:Idr r2, [r4]
y  TRRLErOn 0x000085bc <+32>: Idr (1, [r3, r2, Isl #2]
0x000085c0 <+36>: mov r3, #0
0x000085c4 <+40>:cmp r3, rl
0x000085c8 <+44>: beq 0x85d4 <noiseCoron+56>
0x000085cc <+48>: add r3, r3, #1
0x000085d0 <+52>:b 0x85c4 <noiseCoron+40>
0x000085d4 <+56>: add 2, r2, #1
0x000085d8 <+60>: str r2, [r4]
0x000085dc <+64>: pop {r4, pc}
0x000085e0 <+68>:andeq r0, r1, r0, asrr8
0x000085e4 <+72>:andeq r0, r1, r8, asrr8

End of assembler dump.




Random precharging

Protection against power analysis in a Hamming Distance model

Example: Leakage onvalue v is charged in memoryorina
register:
insn_k
#1 mem <-v

insn_k Leakage: HD(v, k)
#2 reg <-v

Random precharging: the variable assignment s preceded
by an assignment using a mask m, unknown to the attacker:
insn_k
mem <-m
#1l mem <-v

insn_k
reg <- m Leakage:
#2 reg <-v HD(v,m) = HW(v+m)

#tdefine SBOX_SIZE 256
uint8_t sbox[SBOX_SIZE];

#idefine STATE_SIZE 16
uint8_t state[STATE_SIZE];

/% subBytes, table Lookup */
void subBytes(void)
{ &

size_t 1i;

for(i = 0; i<SBOX_SIZE; i++) {
state[i] = sbox[state[i]];
3

3

Compiled with -Os:

0x0000 <+0>: mov r3, #0

0x0004 <+4>: Idrr2, [pc, #28] ; 0x28 <subBytes+40>

0x0008 <+8>: Idrr0, [pc, #28] ; 0x2c <subBytes+44>
0x000c <+12>: Idrb r1, [r3, r2]

0x0010 <+16>: Idrbr1, [rO, r1]

0x0014 <+20>: strbrl, [r3, r2] ; leaky instruction
0x0018 <+24>: add r3, r3, #1

0x001c <+28>: cmp r3, #16

0x0020 <+32>: bne Oxc <subBytes+12>

0x0024 <+36>: bx Ir

0x0028 <+40>: andeq 0, r0, r0

0x002c <+44>: andeq 10, r0, r0
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Random precharging

#define SBOX_SIZE 256
uint8_t sbox[SBOX_SIZE];

#define STATE SIZE 16
uint8_t(volatile state[STATE_SIZE];

+ subBytes, table Lookup #/
vold subBytes(void)
{

size_t 1i;
uint8_t mask, tmp_state;

for(i = 0; i<SBOX_SIZE; i++¥) {
tmp_state = state[i];
mask = rand() & OxFF;

state[i] = mask;
state[i] =

sbox[tmp_state];

Compiled with -

0x0000 <+0>:
0x0004 <+4>:
0Ox0008 <+8>:
O0x000c <+12>:

0x0010 <+16>:
0x0014 <+20>:

0x0018 <+24>
0x001c <+28>:

0x0020 <+32>:
0x0024 <+36>:
0x0028 <+40>:

0x002c <+44>:

0x0030 <+48>:
0x0034 <+52>:
0x0038 <+56>:

0x003c <+60>:

0x0040 <+64>:
0x0044 <+68>:

Os:

push{r4, r5, r6, r7, r8, Ir}

mov r4, #0

ldrr5, [pc, #48] ; <subBytes+64>
Idr r7, [pc, #48] ; <subBytes+68>
ldrb r6, [r5, r4]

bl <rand>

»and r6, r6, #255 ; Oxff

ldrb r3, [r7, r6]

and rO, rO, #15

strb rO, [r5, r4]

strb r3, [r5, r4]

addr4, r4, #1

cmpr4, #16

bne 0x10 <subBytes+16>
pop{r4, r5,r6,r7, r8, Ir}
bx Ir

andeq rO, rO, rO

andeq rO, r0, r0
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Random precharging

#define SBOX_SIZE 256
uint8_t sbox[SBOX_SIZE];

#define STATE SIZFE 16
uint8_tQolatilestate[STATE_SIZE];

void subBytes(void)
{

size_t 1;
uint8_t mask, tmp_state;

for(i = @; i<SBOX_SIZE; i++) {
tmp_state = state[i];
mask = rand() & Ox00ar;

state[i] = mask:
state[i] = sbox[tmp_state];

Compiled with -O1:

0x0000 <+0>: push{r4,r5,r6,r7, r8, Ir}

0x0004 <+4>: movr4, #0

0x0008 <+8>: Idrr6, [pc, #48] ; <subBytes+64>
0x000c <+12>:1drr7, [pc, #48] ; <subBytes+68>
0x0010 <+16>:Idrbr5, [r6, r4]

0x0014 <+20>:andr5, r5, #255 ; Oxff

0x0018 <+24>: bl <rand>

0x001c <+28>:and r0, rO, #15

0x0020 <+32>:strbr0, [r6, r4] Instruction reordering

0x0024 <+36>:1drbr3, [r7, r5] .
0x0028 <+40>: strb r3, [r6, r4] introduces leakage

0x002c <+44>:add r4, r4, #1

0x0030 <+48>:cmpr4, #16

0x0034 <+52>: bne 0x10 <subBytes+16>
0x0038 <+56>: pop{r4, r5,r6,r7, r8, Ir}
0x003c <+60>: bx Ir

0x0040 <+64>: andeq 0, r0, r0

0x0044 <+68>: andeq rO0, rO, r0
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So...

Let’s avoid compiler

ions!
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Compiling with -00

All program variablesare moved onto the
stack before anythingelse

Register spilling (> -00): the register value
is moved to the stack

=> Information leakage!

Bigger code size -> larger attack surface

=> More potential vulnerabilies

Dump of assembler code for function subBytes:

0x84e4 <+0>:
0x84e8 <+4>:
Ox84ec <+8>:
Ox84f0 <+12>:
0x84f4 <+16>:
0x84f8 <+20>:
Ox84fc <+24>:
0x8500 <+28>
0x8504 <+32>
0x8508 <+36>

0x850c <+40>:
0x8510 <+44>:
0x8514 <+48>:
0x8518 <+52>:
0x851c <+56>:
0x8520 <+60>:
0x8524 <+64>:
0x8528 <+68>:
0x852c <+72>:
0x8530 <+76>:
0x8534 <+80>:
0Ox8538 <+84>:
0x853c <+88>:

0x8540 <+92>
0x8544 <+96>

push {r11} ; (strrll, [sp, #-4]!)
add ri11, sp, #0

sub sp,sp, #12

mov r3, #0

str r3, [r11, #-8]

b 0x8530 <subBytes+76>

Idr r2, [pc, #68] ; <subBytes+100>
»ldr r3, [r11, #-8]

radd r3,r2, r3

: 1drb r3, [r3]

Idr r2, [pc, #56] ; <subBytes+104>
ldrbr2, [r2, r3]

Idr r1, [pc, #44] ; <subBytes+100>
ldr r3, [r11, #-8]

add r3,r1, r3

strb r2, [r3]

ldr r3, [r11, #-8]

add r3, r3, #1

str r3, [r11, #-8]

ldr r3, [r11, #-8]

cmp r3, #15

bls 0x84fc <subBytes+24>

sub sp,ri1, #0

: pop {r1l1l}; (ldrrl1l, [sp], #4)

:bx Ir
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Compilation of a Countermeasure Against
Instruction-Skip Faults

push {r4, r7, 1lr}

Fault model: instruction skips [Moro et al., 2014] add r7, sp, #4

Can be protected by the duplication of idempotent instructions [Moro et al., 2014] bl byte compare
cmp—5—H#1 nop
cmp ro, #1 ‘ cmp ro, #1 bne .BB2
idempotent  cymp r@, #1 b .BB1

add r1, ri1, r2 ‘ mv rpe,, rl
non-idempotent MV Preys r1

add rl, r., r2
add rl, rpe, r2

n of a software cquntermeasur tinstr

@ BT, A B BRGp AT RL CEahs MAIEL Eoation e prigtsy

tion skip attacks. doiXXX
I%\'t‘?s?'cks. doiXXX 28/10/2022
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Compilation of a Countermeasure Against
Instruction-Skip Faults

SECLUrity |
- annotations
Fault model: instruction skips [Moro et al., 2014] T
program
Can be protected by the duplication of idempotent instructions [Moro et al., 2014]
| libeares |

cmp ro, #1 EEE) cnp ro, #1
g i e

idempotent Cmp r\@, #1 c o e c c c o c
Sol|lsso Sl [ £ | o0
e 28 58 Sy SO B2
add r1, r2, r3 ‘ add rl, r2, r3 §a é’:’g 535 Q% 8
idempotent add r‘1, r‘2, r3 = < £A £
[ passes added
[0 passes modified
ldr r3, [rl, #4] ldr r3, [rl, #4]
ldr r3, [rl, #4] I:> add ro, ri, r2
. / ® Unprotected ® Protected
add ro, ri, r2 instruction ldr r3, [rl, #4]
. ~ 35000
add re, ri, r2 scheduling add ro, ri, r2 £ET oo
+w * 1.661
(6 cycles) (5-6 cycles) s & 25000
T 20000 A A
Eﬂ 15000 x 1.9 ¥ 2.14
XS 10000 l X 1890 gy X198 gy
5000 .
o B BE & sfNEC
00 01 02 03 Moro et al
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Compilation of a Countermeasure Against
Instruction-Skip Faults

Fault model: instruction skips [Moro et al., 2014]

Can be protected by the duplication of idempotent instructions [Moro et al., 2014]

cmp ro, #1 ‘ cmp ro, #1l
idempotent cmp ro, #1

add r1, r2, r3 ‘ add rl1, r2, r3
idempotent - 44 rl, r2, r3

® Unprotected = Protected

6000
] 5000
N o~
E .E‘ 4000 Eii % 2.1
"] w22k '
L 3000 f x 227" B0
w 2000 |

ol P I

n | H k | | E

o0 01 02

oro, 2014] Form Iverlflcatl n of a software countermeasure, a
S AP IR BRGP S dTRRTRL LIRS KR RO ok

tins

P75

03

i

x 2,10
 3.02

Moro et al

tlon skip attacks. doiXXX
AtEStks. doiXxX

SECLUrity |
- annotations

sOuice
pragram

(= c € c O
S5||8s el [S£]| o6
s = = | =5 ie
e - Sl ST B 31
Bol|2=2 A | 22| |OE
£o| T S 23| T w
[ passes added
[0 passes modified
B Unprotected ™ Protected
E - 35000
* ﬂ 30000 * 1.667
5 > 25000
'ﬂ ﬁ 20000 Y - -
E L] 15000 “'fi x 214/
X< 10000 ] X187y X 1980 py
5000 } l:

01 02 03 Moro et al
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Compilation of a Countermeasure Against
Instruction-Skip Faults

security |
Experimental results: source | || compiler : formal
« Reduced overhead wrt. original implementation (execution time, code size) — pﬂ;?m rerfeaten
« Generalisation of the protection scheme, supported by compilation parameters: T | m
« M: Nb of faults
« size: Fault width
- Targetfunctions
- Fine-grained countermeasure application, to selected functions, reduces the execution E-ﬂ; 30000 | oo mUnerotected = protected
overhead below x1.23 and size overheads belowx1.12 [Barry, 2017] -Eg To000 / ./ ""J/
- Formally verified by RobustB/ LIP6 (IDROMEL project) [Belleville, 2021] £3 Joooo 1 Nl
“”:; I BN & &fTH
But not effective in practice! 0o o1 02 03 Marostal
- Experimental evaluation on a laser bench =
. The target platform (STM32)is intrinsically vulnerable to laser FI g s 5 O
«  Thin fault coverage: 2 %% size = 64 bits
« protects instructions only against skip, but not against byte corruption (hypothetical fault E 200 |
model); 5 4000
« no data protection g 30

x
Pl
=]
(=]
=

T

« Software countermeasures, since not effective, increase the attack surface and oftenlead
to easierexploitation of fault injection.

M=1 M=2 M=3
Nb duplicated instructions

=t
=]
(=]
o O
.

[Moro, 2014] Formal verification of a software countermeasure againstinstruction skip attacks. doiXXX
[Barry, 2016] Compilation of a Countermeasure Against Instruction-Skip Fault Attacks. doiXXX
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Foot=Shooti ng

Prevention Agreem ent

—

I, ) pr'arniae rhat once
Your Name
1 see how aimple AES rea“y is, 1 will
not implement it in production code
even *haugh it would be r'e.a.“y fun.

This agreement shall be in effect
until the underaisned creotes o
rne.a.ningful inferpreﬂve dance tha+
compares ond contrasts cache-based,
timing, ond other side channel attacks
oand their countermeasures.

Signature Daote 28/10/2022
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