0O Ui Wi =

0 O Uik Wi

Grenoble INP

UGA

Master CybserSecurity Year 2023-24

Advanced Security (L. Mounier)

Written Exam - Tuesday January the 16th, 2024

Duration: 2 hours — Answers can be written either in English or in French.
All documents allowed apart books — Electronic devices are forbidden.

This exam contains two distinct parts: 2 exercises and some questions on a research paper.

Exercise 1. (~ 5 pts)

We consider a Java class ReadFile which, when executed, needs to read files from the user! home directory.
Figure 1 gives successively the source codes of ReadFile. java and the one of a calling class C1. java.

import java.lang.x;
import java.security .x;

class ReadFile {
public ReadFile () {

try {
String fileName= ... // name of the file to open

FileReader fileReader = new FileReader(fileName); // open fileName
} catch (Exception e) {

System . err.println (” Caught exception 7 4+ e.toString());
}

}
}

import java.lang.x;
import java.security .x;

class C1 {

public static void main(String[] args) {
ReadFile rf = new ReadFile() ; // calls ReadFile
}

}

Figure 1: The source codes of ReadFile and of one of its calling class C1

Q1. We compile ReadFile.java and C1.java in a same directory D1. Then we run C1 (still in this same

directory). Everything works fine, namely the user files can be read normally.

The developer now wants to strictly restrict the use of ReadFile to calling classes compiled within D1
only, such classes being considered as trustable enough. To do so he introduces a dedicated security policy

controlled by a security manager.

1the one running the application calling this class



0 O Ui Wi

T W N =

1. What information do you need to provide inside the security policy description file?
2. As a developer, how would you test that this proposed solution ensures the expected security require-

ments?

You do not need to provide the exact Java syntax nor command lines, but your answer should be as precise
as possible ...

import java.lang.x;
import java.security .x;

import java.lang.x;
import java.security .sx;

// Trusted class, compiled within DI

class C2 {

public C2() // calls ReadFile
{ReadFile rf = new ReadFile() ;}

// Untrusted class

class C3 {

public static void main(String[] args)
{C2 ¢2 = new C2() ;} // calls C2

0O Ul Wi

Figure 2: The source codes of callers C2.java and C3. java

Q2. We now consider a second scenario with a chain of two callers, where C3 calls C2 which calls ReadFile,
as illustrated on Figure 2. We assume that C2 is compiled within D1, but not C3, which is compiled and
executed from elsewhere.

1. What will happen when running €32, knowing that C2 is allowed to call ReadFile?

2. What is the strategy used by Java to produce this result (or, more generally, to decide whether the
security policy is violated or not)?

Q3. Finally, the developer wants to allow any C2 caller to call ReadFile, assuming that C2 will perform
enough checks, but he still wants to use a security manager and the same security policy to keep a strict
control over other callers of ReadFile.

How could he proceed to do that, and what are the benefits and drawbacks of your proposed solution?

Q4. Another option would have been to use OS-level (e.g., Linux) permissions to control the access of the user
home directory. In particular we could restrict the access of the user home directory only to applications
those owner is allowed to do so (according to Linux permissions). What would be the advantages and
drawbacks (if any!) of this approach with respect to the one described in the previous questions.

Exercise 2. (~ 5 pts)

The piece of code given Figure 3 is part of a program supposed to be (routinely) ran as root on a machine.

access (filename) // check filename access
fd = open(filename) // open filename in file descriptor fd

write (fd ,...) // write inside the file referred by fd

Figure 3: A vulnerable C code

2with the security manager and security policy of Q1



We give below an excerpt of the access() function man page:

int access(const char *pathname, int mode);

access() checks whether the calling process can access the file pathname.

If pathname is a symbolic link, it is dereferenced.

Return value:

On success (all requested permissions granted and the file exists), zero is returned.

Warning:

Using these calls to check if a user is authorized to, for example, open a file before actually doing so using
open(2) creates a security hole, because the user might exploit the short time interval between checking and
opening the file to manipulate it. For this reason, the use of this system call should be avoided.

Q1. Explain the meaning of the last sentence of this man page, and why is it consider as a security hole
(telling what gain an attacker could obtain on this particular example of Figure 3).

Q2. Give a concrete attack setup, providing:

e an informal description of a potential attacker objective and behavior (in a few lines);
e a C program example he/she could use to run this attack (if necessary);

e the (realistic) hypothesis you need to assume for this attack to succeed.
You can make use for instance of the two following C functions:

int link(const char *oldpath, const char *newpath)
link() creates a new link (also known as a hard link) to an existing file. If newpath exists, it will not
be overwritten. This new name may be used exactly as the old one for any operation; both names refer
to the same file (and so have the same permissions and ownership) and it is impossible to tell which
name was the “original”.

int unlink(const char *pathname)
unlink() deletes a name from the filesystem. If that name was the last link to a file and no processes
have the file open, the file is deleted and the space it was using is made available for reuse. If the name
was the last link to a file but any processes still have the file open, the file will remain in existence
until the last file descriptor referring to it is closed. If the name referred to a symbolic link, the link is
removed.

Q3. To prevent the attack mentioned in the previous question, a possible solution is first to perform multiple
consecutive checks, opening the file into distinct file descriptors after each check, and then verifying that
all the opened files are (physically) identical before writing into it (through the opened file descriptor).

1. Explain why this solution may (or must ?) work.

2. Update the code of Figure 3 to implement it; yo can use the macro CMP(£fd1,£d2) to verify that files
referred by £d1 and £d2 are physically identical.



Questions on a research paper. (~ 10 pts)

Read the paper given in appendix up to section 3.6 (included) answering the following questions as long
as you read it. When answering these questions you should not copy entire sentences from the paper but
rather illustrate your point with examples and comments from your own.

Q1 [section 1].
e Briefly summarize the main approaches mentionned in the paper to defeat virtualization-based obfus-
cation.

e Give (and briefly explain) some other obfuscation techniques than virtualization you are aware of.

Q2 [section 2.2]. Using Listingl.1 and 1.2, give the (virtual) bytecode that would be obtained from the
following C statement, assuming that x, y and z are located respectively in registers r0, r1, r2:

X =y + z*x2

Q3 [section 2.3]. Why is it said that Recovering 100% of the original binary code is impossible in general?

Q4 [section 3.1]. Can you explain the difference betwen “direct” tainting and “indirect” tainting (which
is similar to “explicit” vs “implicit” data-flow).

Q5 [sections 3.2 and 3.3].
We replace the first statement of Listing 1.4 by int varl = x (instead of int varl = 1), still assuming
that x is tainted. Give the new version of Figure 4.

Q6 [section 3.4 to 3.6].

1. Obviously, full path coverage cannot be achieved on an arbitrary code. Why?

2. In section 3.1 the authors said they consider direct tainting only. Do you think it could be an issue
with respect to the correctness of P*?7

Q7 (more general question). What are the main limitations you can see regarding the proposed approach?
And, as a defender, how could we proceed to prevent the use of this de-obfuscation technique (still using
virtualization-based obfuscation)?



Symbolic deobfuscation:
from virtualized code back to the original*
(long version)

Jonathan Salwan', Sébastien Bardin?, and Marie-Laure Potet?

! Quarkslab, Paris, France
2 CEA, LIST, Univ. Paris-Saclay, France
3 Univ. Grenoble Alpes, F-38000 Grenoble, France
jsalwan@quarkslab.com, sebastien.bardin@cea.fr,
marie-laure.potetQuniv-grenoble-alpes.fr

Abstract. Software protection has taken an important place during the
last decade in order to protect legit software against reverse engineering
or tampering. Virtualization is considered as one of the very best de-
fenses against such attacks. We present a generic approach based on
symbolic path exploration, taint and recompilation allowing to recover,
from a virtualized code, a devirtualized code semantically identical to
the original one and close in size. We define criteria and metrics to eval-
uate the relevance of the deobfuscated results in terms of correctness and
precision. Finally we propose an open-source setup allowing to evaluate
the proposed approach against several forms of virtualization.

1 Introduction

Context. The field of software protection has increasingly gained in impor-
tance with the growing need of protecting sensitive software assets, either for
pure security reasons (e.g., protecting security mechanisms) or for commercial
reasons (e.g., protecting licence checks in video games or video on demand). Vir-
tual machine (VM) based software protection (a.k.a. virtualization) is a modern
technique aiming at transforming an original binary code into a custom Instruc-
tion Set Architecture (ISA), which is then emulated by a custom interpreter.
Virtualization is considered as a very powerful defense against reverse engineer-
ing and tampering attacks, taking a central place during the last decade in the
software protection arsenal [24, 3-5].

Attacking virtualization. In the same time, researchers have published sev-
eral methods to analyze such protections. They can be partitioned into semi-
manual approaches [14,17,21], automated approaches [12, 18, 23, 25, 26] and pro-
gram synthesis [11,29]. Semi-manual approaches consist in manually detecting
and understanding VM’s opcode handlers, and then, writing a dedicated disas-
sembler. They rely on the knowledge of the reverse engineer and they are time

* Work partially funded by ANR and PIA under grant ANR-15-IDEX-02.



consuming. Some classes of automated approaches aim at automatically recon-
structing the (non-virtualized) control flow of the original program, but they
require to detect some virtualization artefacts [12,23] (virtual program counter,
dispatcher, etc.) — typically through some dedicated pattern matching. These
approaches must be adapted when new forms of virtualization are met. Finally,
another class of approaches [7,25] tries to directly reconstruct the behaviors of
the initial code (before virtualization), based on trace analysis geared at elim-
inating the virtualization machinery. Such approaches aim to be agnostic with
respect to the different forms of virtualization. Yet, while the ultimate goal of
deobfuscation is to recover the original program, these approaches focus rather
on intermediate steps, such as identifying the Virtual Machine machinery or
simplifying traces.

Goal & challenges. While most works on devirtualization target malware de-
tection and control flow graph recovery, we focus here on sensitive function
protections (such as authentication), either for IP or integrity reasons, and we
consider the problem of fully recovering the original program behavior (expurged
from the VM machinery) and compiling back a new (devirtualized) version of
the original binary. We suppose we have access to the protected (virtualized)
function and we are interested in recovering the original non-obfuscated code,
or at least a program very close to it. We consider the following open questions:

— How can we characterize the relevance of the deobfuscated results?

— How much can such approaches be independent of the virtualization ma-
chinery and its protections?

— How can virtualization be hardened against such approaches?

Contribution. Our contributions are the following:

— We present a fully automatic and generic approach to devirtualization, based
on combining taint, symbolic execution and code simplification. We clearly
discuss limitations and guarantees of the proposed approach, and we demon-
strate the potential of the method by automatically solving (the non-jitted
part of) the Tigress Challenge in a completely automated manner.

— We design a strong experimental setup! for the systematic assessment of the
qualities of our framework: well-defined questions & metrics, a delimited class
of programs (hash-like functions, integrity checks) and adequat measurement
besides code similarities (full correctness). We also propose a systematic
coverage of classic protections and their combinations.

— Finally, we propose an open-source framework based on the Triton API,
resulting in reproducible public results.

! Solving the Tigress Challenge was presented at the French industrial conference
SSTIC’17 [19]. The work presented here adds a revisited description of the method,
a strong systematic experimental evaluation as well as new metrics to evaluate the
accuracy of the approach.



The main features of our approach are summarized in Figure 1, in compar-
ison with others works. In particular we propose and discuss some notions of
correctness and completeness as well as a set of metrics illustrating the accuracy

of our approach. Fig. 1 will be explained in more details in Sec. 6.

manual Kinder[12] Coogan[7] Yadegari[26] Our approach
identify input required required required required required
understand vpc required required no no no
understand dispatcher| required no no no no
understand bytecode | required no no no no
output simplified CFG + simplified simplified simplified
CFG invariants trace CFG code
key techno. - static analysis value-based taint, symbolic taint, symbolic

code slicing formula slicing

(abstract interp.) slicing instr. simplification ||formula simplification
code simplification
xp: type of code - toy examples | toys+malware toys+malware hash functions
xp: #samples - 12 44 920

xp: evaluation metrics _ known invariants |%simplification similarity size, correctness

Fig. 1: Position of our approach

Discussion. While our approach still shows limitations on the class of programs
that can be handled (cf. Section 5), the present work clearly demonstrates that
hash-like functions (typical of proprietary assets protected through obfuscation)
can be easily retrieved from their virtualized versions, challenging the common
knowledge that virtualization is the best defense against reversing — while it is
true for a human attacker, it does not hold anymore for an automated attacker
(unless the defender is ready to pay a high running time overhead with deep
nested virtualization). Hence, defenders must take great care of protecting the
VM machinery itself against semantic attacks.

Long version. This version adds a discussion on the (implicit) backward slicing
step performed at formula level (Section 3.3), and it also presents more detailed
statistics about the Tigress challenge (Tables 6 and 7 in Section 4.5), in order
to ease reproducibility and comparison of results.

2 Background: Virtualization and Reverse Engineering

2.1 Virtualization-based Software Protection

Virtualization-based software protections aim at encoding the original program
into a new binary code written in a custom Instruction Set Architecture (ISA)
shipped together with a custom Virtual Machine (VM). Such protections are of-
fered by several industrial and academic tools [24, 3-5]. Generally, it is composed
of 5 principal components, close to CPU design (Figure 2):

1. Fetch: Its role is to fetch, from the VM’s internal memory, the (virtual)
opcode to emulate, based on the value of a virtual program counter (vpc).
Decode: Its role is to decode the fetched opcode and its appropriate operands
to determine which ISA instruction will be executed.



3. Dispatch: Once the instruction is decoded, the dispatcher determines which
handler must be executed and sets up its context.

4. Handlers: They emulate virtual instructions by sequences of native instruc-
tions and update the internal context of VM, typically vpc.

5. Terminator: The terminator determines if the emulation is finished or not.
If not, the whole process is executed one more time.

Fetch

Decode Instruction

Dispatch

bl

[ Handler 2 ]

Handler 1

[ Handler 3 ]

[R

Fig. 2: Standard Virtual Machine Architecture

2.2 Example

Let us consider the C function of Listing 1.1 we want to virtualize it. Disassembly
of the VM’s bytecode is in comment in Listing 1.1. Once Listing 1.1 is compiled to
VM’s bytecode, it must be interpreted by the virtual machine itself. The sample
of code illustrated by Listing 1.2 could be this kind of VM. The VM is called with
an initial vpc pointing to the first opcode of the bytecode (e.g: the virtual address
of instruction mov r0, r9). Once the opcode has been fetched and decoded by
the VM, the dispatcher points to the appropriate handler to virtually execute the
instruction and then, the handler increments vpc to point on the next instruction
to execute and so on until the virtualized program terminate. As we can see, the
control flow of the original program is lost and replaced by a dispatcher pointing
on all VM’s handlers (here, only four instructions).

2.3 Manual De-virtualization

Manual devirtualization typically comes down to writing a disassembler for the
(unknown) virtual architecture under analysis. It consists of the following steps:

1. Identify that the obfuscated program is virtualized, and identify its input;

2. Identify each component of the virtual machine;

3. Understand how all these components are related to each other, especially
which handler corresponds to which bytecode, the associated semantics,
where operands are located and how they are specified;

4. Understand how vpc is orchestrated.



int func(int x) { void vm(ulong vpc, struct vmgprx gpr) {

int a = x; while (1) {
int b = 2; /* Fetch and Decode x/
int ¢ = a * b; struct opcodex i = decode(fetch(vpc));

/* Dispatch */

} switch (i—>getType()) {
/x Handlers x/

case ADD /x 0z21 x/:

/* gpr—>r [i—>dst] = i—>opl + i—>o0p2;
*% Bytecodes equivalence: vpc += 4; break;
* % case MOV /« 0xz31 */:
*x 81 ff 00 09: mov r0, r9 gpr—>r[i—>dst] = i—>opl;
*x 31 01 02 00: mov r1, 2 vpc += 4; break;
*% 44 00 00 01: mul r0, r0, rl case MUL /x Oz44 */:
** 60: ret gpr—>r [i—>dst] = i—>opl * i—>op2;
*/ vpc += 4; break;
case RET /x 0z60 x/:
Listing 1.1: A C function vpe 4= {; retum;/
183

Listing 1.2: Example of VM

Once all these points have been addressed, we can easily create a specific
disassembler targeted to the virtual architecture. Yet, solving each step is time
consuming and may be heavily influenced by the reverse engineer expertise, the
design of the virtual machine (e.g: which kind of dispatcher, of operands, etc.)
and the level of obfuscation implemented to hide the virtual machine itself.

Discussion. Recovering 100% of the original binary code is impossible in gen-
eral, that is why devirtualization aims at proposing a binary code as close as
possible to the original one. Here, we seek to provide a semantically equivalent
code expurged from the components of the virtual machine (devirtualized code).
In other words, starting from the code in Listing 1.2, we want to derive a code
semantically equivalent and close (in size) to the code in Listing 1.1.

3 Ouwur Approach

We rely on the key intuition that an obfuscated trace T’ (from the obfuscated
code P') combines original instructions from the original code P (the trace T
corresponding to T' in the original code) and instructions of the virtual machine
VM such that T' = T + VM(T). If we are able to distinguish between these
two subsequences of instructions 7' and VM (T'), we then are able to reconstruct
one path of the original program P from a trace T”. By repeating this operation
to cover all paths of the virtualized program, we will be able to reconstruct the
original program P — in case the original code has a finite number of executable
paths, which is the case in many practical situations involving IP protection.

3.1 Overview

The main steps of our approach, sketched in Fig. 3, are the following ones:



Step 0: Identify input.

Step 1: On a trace, isolate pertinent instructions using a dynamic taint analysis.

Step 2: Build a symbolic representation of these tainted instructions.

Step 3: Perform a path coverage analysis to reach new tainted paths.

Step 4: Reconstruct a program from the resulting traces and compile it to
obtain a devirtualized version of the original code.

In our approach, Step-0 (identifying input) must still be done manually, in a
traditional way. By input we include all kinds of external interactions depending
on the user, such as environment variables, program arguments and system calls
(e.g. read, recv, etc.). Analysts will typically rely on tools such as IDA or
debuggers for this step.

Optimizations
and
CFG reconstruction

J

Virtualized St ) Step2 Generalized sub-trace as Set of o
. Tainted - ] Devirtualized
Binary Code —— Sub-trace (x86) —  Symbolic Expressions sub-traces LLVM IR Binary Code
( + seed (AST) (AST) ry
Step 3 Step 4
Path Coverage Deobfuscated Binary

(new seed) Construction

Fig. 3: Schematized Approach

Our approach is based on the tool suite Triton [20] which provides several
advanced classes to improve dynamic binary analysis, in particular a concolic
execution engine, a SMT symbolic representation and a taint analysis engine.

Dynamic Symbolic Execution. (DSE) [22,9,10] (a.k.a. concolic execution)
is a technique that interprets program variables as symbolic variables along
an execution. During a program execution, the DSE engine builds arithmetic
expressions representing data operations and logical expressions characterizing
path constraints along the execution path. These constraints can then be solved
automatically by a constraint solver [27] (typically, SMT solver) in order to
obtain new input data covering new paths of the program. Conversely to pure
symbolic execution, DSE can reduce the complexity of these expressions by using
concrete values from the program execution ( “concretization” [10]).

Dynamic Taint Analysis. (DTA) [6,28] aims to detect which data and in-
structions along an execution depend on user input. We consider direct tainting.
Regarding the code in Listing 1.3 where user input is denoted by input, we start
by tainting the input at line 1. Then, according to the instruction semantics, the
taint is spread into rax at line 1, then rcx at line 3 and rdi at line 4. To re-
sume, using a taint analysis, we know that instructions at line 1, 3, and 4 are in
interaction with user input, while other lines are not.



mov rax, input
mov rcx, 1

add rcx, rax
mov rdi, rcx

Listing 1.3: x86 ASM sample

W N =

Taint can be combined with symbolic execution in order to explore all paths
depending on inputs, resulting in input values covering these paths.

3.2 Step 1 - Dynamic Taint Analysis

The first step aims at separating those instructions which are part of the vir-
tual machine internal process from those which are part of the original program
behavior. In order to do that, we taint every input of the virtualized function.
Running a first execution with a random seed, we get as a result a subtrace
of tainted instructions. We call these instructions: pertinent instructions. They
represent all interactions with the inputs of the program, as non-tainted instruc-
tions have always the same effect on the original program behavior. At this step,
the original program behaviors are represented by the subtrace of pertinent in-
structions. But this subtrace cannot be directly executed, because some values
are missing, typically the initial values of registers.

3.3 Step 2 - A Symbolic Representation

The second step abstracts the pertinent instruction subtrace in terms of a sym-
bolic expression for two goals: (1) prepare DSE exploration, (2) recompile the
expression to obtain an executable trace. In symbolic expressions, all tainted val-
ues are symbolized while all un-tainted values are concretized. In other words,
our symbolic expressions do not contain any operation related to the virtual
machine processing (the machinery itself does not depend on the user) but only
operations related to the original program.

O 2
oRo @Q — Yo
offo

Fig. 4: Concretization of non tainted expressions

In order to better understand what Step 2 does, let us consider the function
illustrated in Listing 1.4. Variable x is tainted as well as symbolized and the



expression associated to variable var8 is illustrated on the left of Figure 4 (gray
nodes are tainted data). Then, once we concretize all un-tainted nodes, the
expression becomes the one illustrated on the right. This mechanism typically
allows to remove the VM machinery.

int f(int x) {

int varl = 1;

int var2 = 2;

int var3 = varl + var2;
int vard = 6;

int varb5 = 3;

int var6 = var4d ~ varb;
int var7 = x + var6;
int var8 = var3 x var7;

return var8;

Listing 1.4: Sample of C code

A note on formula-level backward slicing. As it is common in symbolic
execution, the symbolic representation is first computed in a forward manner
along the path (see [15, Figure 2] for the basic algorithm), then all logical oper-
ations and definitions affecting neither the final result nor the followed path are
removed from the symbolic expression (formula slicing, a.k.a. formula pruning
— see for example [16]). This turns out to perform on the formula the equivalent
of a backward slicing code analysis from the program output.

3.4 Step 3 - Path Coverage

At this step we are able to devirtualize one path. To reconstruct the whole
program behavior, we successively devirtualize reachable tainted paths. To do
so, we perform path coverage [10] on tainted branches with DSE. At the end,
we get as a result a path tree which represents the different paths of the original
program (Figure 5). Path tree is obtained by introducing if-then-else construction
from two traces t; and to with a same prefix followed by a condition C' in t; and
=C' in t2.

3.5 Step 4 - Generate a New Binary Version

At this step we have all information to reconstruct a new binary code: (1) a
symbolic representation of each path; (2) a path tree combining all reachable
paths. In order to produce a binary code we transform our symbolic path tree
into the LLVM IR to obtain a LLVM Abstract Tree (AST in Fig. 3) and compile



e

s

Fig. 5: Path Tree Fig.6: A Reconstructed CFG

OO
OnOnOn050
OmOaOn0
OO

it. In particular we benefit from all LLVM (code level) optimizations? to par-
tially rebuild a simplified Control Flow Graph (Figure 6). Note that moving on
LLVM allows us to compile the devirtualized program to another architecture.
For instance, it is possible to devirtualize a x86 function and to devirtualize it
to an ARM architecture.

3.6 Guarantees: About Correctness and Completeness

Let P be the obfuscated program and P* the extracted program. We want to
guarantee that P and P* behave equivalently for each input. We decompose this
property into two sub-properties:

- local correctness: for a given input ¢, P and P* behave equivalently,
- completeness: local correctness is established for each input.

While local correctness can often be guaranteed, depending on properties of
each step (see Figure 7), completeness is lost in general as it requires full path
exploration of the virtualized program. Interestingly enough, it can be recovered
in the case of programs with a small number of paths, which is the case for many
typical hash or crypto functions.

Step| Component flaw threats on P*

1 taint undertainting incorrect
overtainting too large

2 path predicate |under-approximated| incomplete
over-approximated incorrect

3 | path exploration incomplete incomplete
4 |code optimization incorrect incorrect
incomplete too large

Fig. 7: Impact of each components on the overall approach

% Such as simplifycfg and instcombine.



3.7 Implementation

We develop a script® implementing our method. The Triton library [20] is in
charge of everything related to the DSE and the taint engine. We also use
Arybo [8] to move from the Triton representation to the LLVM-IR [13] and
the LLVM front-end to compile the new binary code. The Triton DSE engine
is standard [10, 22]: paths are explored in a depth-first search manner, memory
accesses are concretized ¢ la DART [10] (resulting in incorrect concretization)
[15], logical formulas are expressed in the theory of bitvectors and sent to the
Z3 SMT solver. Triton is engineered with care and is able to handle execution
traces counting several dozen millions of instructions.

Regarding the discussion in Section 3.6, we can state that our implementation
s correct on programs without any user-dependent memory access, and that it
is even complete if those programs have a small number of paths (say, less than
100). While very restrictive, these conditions do hold for many typical hash-like
functions, representative of proprietary assets protected through obfuscation.

4 Experiments

In order to evaluate our approach we proceed in two steps. First we carry out
a set of systematic controlled experiments in order to precisely evaluate the
key properties of our method (Sections 4.1 to 4.4). Second we address a real
life deobfuscation challenge (Tigress Challenge) in order to check whether our
approach can address uncontrolled obfuscated programs (Section 4.5). Code,
benchmarks and more detailed results are available online?. We propose the
three following evaluation criteria for our deobfuscation technique:

C:: Precision,
Cs: Efficiency,
C5: Robustness w.r.t. the protection.

4.1 Controlled Experiment: Setup

Our test bench is composed of 20 hash algorithms comprising 10 well-known
hash functionsand 10 homemade ones taken from the Tigress Challenge® (see
Table 1). The proposed functions are typically composed of a statically-bounded
loop and contains one or two execution paths. These programs are typical of the
kinds of assets the defender might want to protect in a code.

In order to protect these 20 samples, we choose the open-use binary protector
Tigress®, a diversifying virtualizer /obfuscator for the C language that supports
many novel defenses against both static and dynamic reverse engineering and

3 https://github.com/JonathanSalwan/Tigress_protection/blob/master /solve-vm.py
* https://github.com/JonathanSalwan/Tigress_protection

5 Thanks to Christian Collberg for having provided us the original source codes.

5 http://tigress.cs.arizona.edu



