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In3S, Faculté de Médecine,
38706 La Tronche, France
Laurent.Desbat@imag.fr

October 19, 2012



2



Contents

1 Introduction 7

1.1 Some historical facts, aims of the book . . . . . . . . . . . . . 7

1.2 Radiology and nuclear imaging, physical models . . . . . . . . 8

1.2.1 Radiology . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Nuclear Imaging . . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Other medical imaging modalities . . . . . . . . . . . 8

1.2.4 Application context . . . . . . . . . . . . . . . . . . . 8

1.3 Notations, standard results . . . . . . . . . . . . . . . . . . . 8

1.3.1 Radon transform . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 X-ray transforms . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Divergent Beam transform . . . . . . . . . . . . . . . . 9

2 2D Tomography 11

2.1 Elementary properties of the Radon and the X-ray transforms 11

2.1.1 Parallel geometry . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Elementary properties . . . . . . . . . . . . . . . . . . 11

2.1.3 Projection slice theorem . . . . . . . . . . . . . . . . . 12

2.1.4 Filtered Back Projection inversion formula . . . . . . 12

2.1.5 Fanbeam geometry . . . . . . . . . . . . . . . . . . . . 14

2.2 Incomplete data . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Definitions and classical results . . . . . . . . . . . . . 16

2.3 ROI approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Hilbert Filtered Back Projection . . . . . . . . . . . . 17

2.3.2 Differentiated Backprojection with Hilbert filtering . . 19

2.3.3 Advances with DBP-H approaches . . . . . . . . . . . 21

3 3D Reconstruction from projections 23

3.1 Radon transform in higher dimension and 3D . . . . . . . . . 23

3.1.1 Projection slice theorem . . . . . . . . . . . . . . . . . 23

3.1.2 Filtered Back Projection inversion formula . . . . . . 23

3.2 3D X-ray transforms . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Parallel projections . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Cone beam projections . . . . . . . . . . . . . . . . . . 25

3



4 CONTENTS

3.3 Inversion of the Parallel geometry . . . . . . . . . . . . . . . . 25
3.3.1 Orlov Condition . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Colsher Filter . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Cone Beam Tomography Reconstruction . . . . . . . . . . . . 25
3.4.1 Tuy Condition . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 Grangeat Formula . . . . . . . . . . . . . . . . . . . . 25
3.4.3 Katsevich Inversion Formula . . . . . . . . . . . . . . 25

4 Dynamic Tomography 27
4.1 Analytic approach . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Parallel geometry . . . . . . . . . . . . . . . . . . . . . 29
4.1.2 Divergent geometry . . . . . . . . . . . . . . . . . . . 29

4.2 Algebraic approach . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A Numerics 35
A.1 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . 35

A.1.1 DFT and Fourier coefficient of a function in L2
P (a) . 35

A.1.2 Link between the Fourier Transform and the DFT . . 35
A.2 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.2.1 Computing filters . . . . . . . . . . . . . . . . . . . . . 36

Glossary 37

Acronyms 39



List of Figures

2.1 2D tomography: parallel geometry parameters. The line of
integration s~θ + R~ζ is the dashed line. . . . . . . . . . . . . . 11

2.2 The Fan Beam variables (t, α) . . . . . . . . . . . . . . . . . 14
2.3 The parallel variables (φ, s) are changed to the fan beam vari-

ables (t, α) such that s = ~θ · ~vt and φ = α . . . . . . . . . . . 16
2.4 Short scan with (Parker) weight is possible.... . . . . . . . . 17
2.5 Parallel Fan Beam Hilbert Equality. . . . . . . . . . . . . . . 19

3.1 Spherical Change of variables in 3D: ~x = (x1, x2, x3) = r~θ(φ1, φ2).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A.1 Periodization fP (a) (right), of period a, of f a function of
compact support contained in [0, a] (left). . . . . . . . . . . . 36

5



6 LIST OF FIGURES



Chapter 1

Introduction

CT Scanners and nuclear imaging (SPECT and PET) have greatly improved
medical diagnoses and surgical planning. Mathematics is necessary for these
medical imaging systems to work. We present mathematical problems aris-
ing from these medical imaging systems. We show how to reconstruct images
from projections of the attenuation function in radiology or respectively of
the activity in nuclear imaging. We present recent advances in 2D and 3D
reconstruction problems.

This presentation covers 2D tomography including the reconstruction of
Region Of Interest from non-complete data (very short scan trajectories,
truncated projections), 3D tomography from Orlov and Tuy Conditions to
Kolsher filter and Katsevich reconstruction formula, and dynamic tomogra-
phy.

In this introduction we present briefly the physical interactions between
photons and matter. We derive the mathematical problem formulation of
a function reconstruction from its projections. We introduce the Radon
transform and the x-ray transform, their basic properties, in particular the
Fourier slice theorem. In 2D tomography, we show the Filtered BackPro-
jection inversion formula and its application to fan-beam geometries. We
then concentrate on recent advances in ROI reconstruction from incomplete
projections. In 3D reconstruction, we derive inversion conditions and for-
mulas for the parallel geometry and the Cone Beam Geometry. We develop
recent advances based on the Katsevich formula. We then introduce dy-
namics problems, i.e. reconstruction from dynamic object. We consider the
problem of reconstructing a 2D dynamic object from its projections and
show extensions to 3D dynamic reconstruction.

1.1 Some historical facts, aims of the book

Reconstruction mehods of a function from its integral values on lines were
proposed for applications in astronomy [2] as early as the fifties. But the first
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8 CHAPTER 1. INTRODUCTION

inversion is due to J. Radon [17] in 1917 in a general mathematical frame-
work. Even if X-rays were already discovered in 1895 by W. Röntgen1, no to-
mographic application was proposed before begin of the sixties. Cormack [4],
proposed methods and algorithms to reconstruct the interior densities of an
object from exterior x-ray attenuation measurements. Hounsfield [12] con-
structed the first medical CT. Both Cormack and Hounsfield received the
Nobel price for their pionneering work in 1979.

The aim of the book is fist to give an introduction to the mathematics
of tomography. We also want to underline the results made since the early
2000. In 2002, at the conference “Fully 3D image reconstruction”, the Kat-
sevitch formula establishing a analytic inversion of the 3D conical transform
on the helix was the starting points for a decade of new developments in
2D and 3D reconstruction. His formula, was essentially a weighted filtered
back-projection, with the filtering occurring on lines on the detector. He
generalized soon the formula to other source trajectories. His work influ-
enced also greatly the way to consider 2D reconstruction problems. This new
and modern way to solve the reconstruction problem yields ROI approaches.

The notations are mainly inspired on the excellent book [15].

1.2 Radiology and nuclear imaging, physical mod-
els

1.2.1 Radiology

1.2.2 Nuclear Imaging

1.2.3 Other medical imaging modalities

1.2.4 Application context

1.3 Notations, standard results

We consider the attenuation function µ of an object in Rn, d ∈ N, d ≥ 2. In
practice we restrict the dimension n to n = 2 for single slice tomography,
n = 3 for 3D tomography or for 2D dynamic tomography and n = 4 for 3D
dynamic tomography. We suppose that µ : Rn → R is a bounded function of
compact support contained in Ω, where Ω = {~x ∈ Rn, ‖~x‖ ≤ 1} and ‖~x‖ =√∑d

j=1 x
2
i is the euclidean norm of ~x. Thus µ ∈ Lp (Rn) , ∀p ∈ N?.

1Über eine neue Art von Strahlen (On a New Kind of Rays), 28 december 1995 ap-
plication for publication of W. C. Röntgen at the ”Physikalisch-medizinische Gesellschaft
Würzburg” (physical-medical association)
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1.3.1 Radon transform

Let µ ∈ L1 (Rn) then the Radon transform Rµ of µ is defined by

Rµ
(
~θ, s
)

def
=

∫
~θ⊥
µ
(
s~θ + ~y

)
d~y =

∫
~x·~θ=s

µ (~x) d~x =

∫
Rn
µ (~x) δ

(
~x · ~θ − s

)
d~x

(1.1)
where ~θ ∈ Sd−1, the unit sphere in Rn, ~θ⊥ is the hyperplane orthogonal to
~θ. We define the Radon projection in the direction ~θ by

R~θµ (s)
def
=Rµ

(
~θ, s
)

(1.2)

From Fubini theorem we have immediately that
(
R~θµ

)
∈ Lp (R).

1.3.2 X-ray transforms

Let µ ∈ L1 (Rn) then the X-ray transform Xµ of µ is defined by

Xµ
(
~ζ, ~y
)

def
=

∫
R
µ
(
~y + l~ζ

)
dl (1.3)

where ~ζ ∈ Sn−1, the unit sphere in Rn, ~y ∈ ~ζ⊥ is in the hyperplane orthog-
onal to ~ζ.

1.3.3 Divergent Beam transform

Let ~v ∈ Rn denotes a point (an X-ray source position in X-ray CT), and
~ζ ∈ Sn−1 a unit vector (in the direction from the source to the detector in
X-ray CT), the Divergent Beam transform is defined by

Dµ
(
~v, ~ζ
)

=

∫ +∞

0
µ
(
~vt + l~ζ

)
dl (1.4)

Generally (in particular in X-ray CT) the data are acquired from multiple
source positions and the source describe a trajectory along a curve

~v : T ⊂ R −→ Rn
t −→ ~v(t)

We will suppose in the following that the source trajectory C = {v(t), t ∈ T},
is outside of Ω (outside of the convex hull of the support of µ is a sufficient
condition), i.e., Ω ∩ C = ∅. In practice, the source trajectory is sampled.
The number p ∈ N of x ray projections is bounded. Thus we deal with a
finite number of vertices, ~vi ∈ Rn, i = 1, . . . , p (and ~vi = ~v(ti), ti ∈ T is the
sampling of the source trajectory).

In 2D, the fan beam data can be parametrized

d(t, α) = Dµ
(
~v(t), ~ζ(α)

)
(1.5)

with ~ζ(α) = (− sinα, cosα).
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Chapter 2

2D Tomography

2.1 Elementary properties of the Radon and the
X-ray transforms

2.1.1 Parallel geometry

In the following we denote for n = 2 by p the parallel projections of a
function µ on the plane (µ ∈ L1

(
R2
)
):

p(φ, s)
def
=Xµ

(
~ζ, s~θ

)
= Rµ

(
~θ, s
)

=

∫
R
µ
(
l~ζ + s~θ

)
dl, (2.1)

where ~θ = (cosφ, sinφ) , ~ζ = (− sinφ, cosφ) , φ ∈ [0, 2π).

s

~e2

~ζ

~θ
φ

~e1

Figure 2.1: 2D tomography: parallel geometry parameters. The line of
integration s~θ + R~ζ is the dashed line.

2.1.2 Elementary properties

We easily see the symetry of the Radon transform p(φ + π, s) = p(φ,−s)
(because ~θ(φ+ π) = −~θ(φ) the line of equation ~θ(φ+ π) · ~x = s is the same

11



12 CHAPTER 2. 2D TOMOGRAPHY

as ~θ(φ) · ~x = −s). We define p at fixed φ by pφ(s)
def
=p(φ, s). As µ ∈ Lp(R2),

by Fubini’s theorem pφ ∈ Lp(R) thus p ∈ LpP (2π) × Lp(R)1. Thus we can
define the Fourier transform of pφ

p̂φ(σ) =

∫
R
pφ(s)e−2iπσsds

and we have pφ(s) =
∫
R p̂φ(σ)e2iπσsdσ (at least in the L2 sense, more strongly

for regular function, e.g. punctually when pφ is continuous).
We can define the 2D Fourier transform of p by

p̂k(σ) =
1

2π

∫ 2π

0

∫
R
p(φ, s)e−2iπ(σs+kφ)dsdφ

and

p(φ, s) =
∑
k∈Z

∫
R
p̂k(σ)e+2iπ(σs+kφ)ds

2.1.3 Projection slice theorem

Theorem 2.1.1. Let µ ∈ L1(R2) then

R̂~θµ(σ) = µ̂(σ~θ)

Proof.

R̂~θµ(σ) =

∫
R
R~θµ(s)e−2iπσsds

=

∫
R

(∫
R
µ
(
s~θ + l~ζ

)
dl

)
e−2iπσsds

=

∫
R2

µ(~x)e−2iπσ
~θ·~xd~x

= µ̂(σ~θ)

where we have made the change of variable (s, l) to (x1, x2) i.e. ~x = s~θ+ l~ζ.
This is a rotation thus dlds = dx1dx2

Note that with our 2D notation this theorem reads p̂φ(σ) = µ̂(σ~θ).

2.1.4 Filtered Back Projection inversion formula

Theorem 2.1.2. Let µ ∈ L1(R2) sufficiently smooth then

µ(~x) =

∫ π

0

∫
R
R̂~θµ(σ)|σ|e2iπσ~x·~θdσdφ

1LpP (a) is the set of periodic functions f of period a > 0 such that the integral of |f |p
over a period exists with p > 0
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Proof.

µ(~x) =

∫
R2

µ̂(~ξ)e2iπ
~ξ·~xd~ξ

=

∫ π

0

∫
R
µ̂(σ~θ)e2iπσ

~θ·~x|σ|dσdφ

=

∫ π

0

∫
R
R̂~θµ(σ)|σ|e2iπσ~θ·~xdσdφ

where we have made the polar change of variables ~ξ = σ~θ(φ), (φ, σ) ∈
[0π[×R, thus dξ1dξ2 = |σ|dσdφ, and we have used theorem 2.1.1.

Note that with our 2D notation this theorem reads

µ(~x) =

∫ π

0

∫
R
p̂φ(σ)|σ|e2iπσ~x·~θdσdφ.

From therorem 2.1.2 we can derive by a simple discretization of both
integrals an algorithm known as the Filtered Back Projection (FBP) algo-
rithm, see [15]. This formula is generally decomposed into two steps

1. The filtering step by the ramp filter

∀φ, pF (φ, s) =

∫
R
p̂φ(σ)|σ|e2iπσsdσ

Generally the filtering in the Fourier space |σ| called the ramp filtering
(denoted by r here) is replaced by more regular (and less sensitive to
noise) filters such as r̂c(σ) = χ[−c,c](σ)|σ|, where c > 0 is a cut-off
frequency, i.e,.

rc(s) =

∫ c

−c
χ[−c,c](σ)|σ|e2iπσsdσ

Thus pF is the convolution of pφ by r, i.e. pF (φ, s) = rc ? pφ(s), more
precisely

pF (φ, s) =

∫
R
rc(s− u)pφ(u)du.

Note thas rc is a non-local filter with long dependancy. See also [15]
for other filters such as the Shepp and Logan filter.

2. The filtering step is followed by the back projection step

µ(~x) =

∫ π

0
pF (φ, ~x · θ)dφ.

We remark that |σ| = 1
2π (2iπσ) (−isgn(σ)). Thus the filter is the Hilbert

filtering (multiplication of by p̂φ(σ) by−isgn(σ)) composed by the derivation
(multiplication by 2iπσ). The filtering step can be thus written pH(φ, s) =
Hpφ(s) see (2.3) followed by a derivation pF (φ, s) = ∂pH

∂s (φ, s). Here also a
regularized Hilbert filtering is used in practice, see section A.2.1.
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2.1.5 Fanbeam geometry

Source trajectories

We first define the source trajectory along a curve outside the convex hull
of the support of µ

~v : T −→ R2

t −→ ~v(t)

The fan-beam data are then defined by

d (~vt, α)
def
=

∫ +∞

0
µ
(
~vt + l~ζ(α)

)
dl (2.2)

We remark that

p(φ, s) = d(~vt, φ) + d(~vt, φ+ π) where s = ~vt · ~θ(φ).

In the following, we make the small abuse of notation d (t, α)
def
=d (~vt, α).

~ζ(α)

~v(t)

α

α

Figure 2.2: The Fan Beam variables (t, α)

Inversion formulas and Parker weights

We consider the circular trajectory, ~vt = (−Rv cos t,−Rv sin t),

Theorem 2.1.3. Let µ ∈ L1(R2) sufficiently smooth then

µ(~x) =
1

2

∫ 2π

0

1

‖~x− ~vt‖2
dWF (~vt, arg(~x− ~vt)) dt
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where

dWF (~vt, φ) =

∫ t+π/2

t−π/2
Rv cos(ψ − t)d(~vt, ψ)r (sin(φ− ψ)) dψ

where r is the ramp filter (r̂(σ) = |σ|).

Proof. We start from the FBP formula on [0, 2π], writen under the convo-
lution form

µ(~x) =
1

2

∫ 2π

0

∫
R
r(~x · ~θ − s)p(φ, s)dsdφ,

where r is the ramp filter (in practice we use a regularized version). We see

in Fig. 2.3 that d(t, α) = p
(
α,~v(t) · ~θ(α)

)
. Thus we want to change in the

previous formula the variables s, φ into the variables t, α with φ = α and
s = ~v(t) · ~θ(α). For a given a given (φ, s) we remark that there exists one
(t, α) such that α = φ and ~v(t) · ~θ(φ) = s (with ~ζ(φ) · ~v(t) ≤ 0 else the half
line ~v(t) +R+~ζ(α) do not cross Ω) i.e. −R(− sin t cosφ+ cos t sinφ) = s i.e.,
sin(t− φ) = s/R i.e. t = φ+ arcsin

(
s
R

)
. The change of variable{

φ = α
s = R sin(t− α)

inversely

{
t = φ+ arcsin

(
s
R

)
α = φ

is one to one for (φ, s) ∈ [0, 2π)× [−1, 1] and (t, α) ∈ [0, 2π)× [αm(t), αM (t)]
where αm(t) = t−arcsin

(
1
R

)
, αM (t) = t+arcsin

(
1
R

)
(αM−αm = 2 arcsin

(
1
R

)
is the fan-angle).

The Jacobian matrix of the variable change is

J(t, α) =

[ ∂φ
∂t

∂φ
∂α

∂s
∂t

∂s
∂α

]
=

[
0 1

R cos(t− α) −R cos(t− α)

]
thus |det J | = R cos(t − α) (always positive because α − t ∈ [αm, αM ] ⊂
[−π

2 ,
π
2 ]. Thus we have

µ(~x) =
1

2

∫ 2π

0

∫ αM (t)

αm(t)
R cos(t− α)r

(
~x · ~θ(α)− ~vt · θ(α)

)
p(α,~vt · θ(α))dαdt,

We remark that

r
(
~x · ~θ − ~vt · θ

)
=

1

‖~x− ~vt‖2
r

(
~x− ~vt
‖~x− ~vt‖

· ~θ
)

Let us now define ψ such that

ζ(ψ)
def
=

~x− ~vt
‖~x− ~vt‖

i.e.,

ψ +
π

2
= arg

(
~x− ~vt
‖~x− ~vt‖

)



16 CHAPTER 2. 2D TOMOGRAPHY

then
~x− ~vt
‖~x− ~vt‖

· ~θ(α) = sin(α− ψ)

and as r is even we have

r

(
~x− ~vt
‖~x− ~vt‖

· ~θ
)

= r (sin(ψ − α))

Thus

µ(~x) =
1

2

∫ 2π

0

1

‖~x− ~v(t)‖2
dF (~vt, ψ)|ψ=arg(~x−~vt)−π2 dt

with

dF (~vt, φ) =

∫ αM (t)

αm(t)
R cos(t− α)r(sin(φ))d(t, α)dα,

t

~v(t)

~ζ(t)

~ζ(φ)
φ = α

αm

αM

~ζ(αm)

~ζ(αM)

= ~ζ(φ)

~ζ(α)

~θ(φ)

s = ~θ · ~vt

s

Figure 2.3: The parallel variables (φ, s) are changed to the fan beam vari-
ables (t, α) such that s = ~θ · ~vt and φ = α

2.2 Incomplete data

2.2.1 Definitions and classical results

Interior and exterior problems

,
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Figure 2.4: Short scan with (Parker) weight is possible....

limited angular data

truncated projections

2.3 ROI approaches

A very good review of 2D ROI reconstruction approaches has been presented
in [3] and this section is mainly based on this review.

2.3.1 Hilbert Filtered Back Projection

The Hilbert Filtered Back Projection method is an indirect consequence of
the Katsevich inversion formula for 3D helical cone beam tomography. In-
deed, the Katsevich formula was in 2002 a deep innovation. It was tempted
to study what was the consequence for 2D fan-beam problem examining
what arise when the helical pitch was converging to zero. It was the start-
ing point of [16] and the beginning of a rich series of papers on both 3D
reconstruction and 2D ROI methods.

Introduction and notations

We define pH the Hilbert transform of the parallel projection p

pH(φ, s) =

∫ +∞

−∞
p(φ, u)h(s− u)du where h(u) =

1

πu
(2.3)

and ĥ(σ) = −isgn(σ) (distribution). The ramp filtering pR of p is

pR(φ, s) =
1

2π

∂

∂s
pH (φ, s)
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We define dH the Hilbert transform of the fan beam projection d

dH(~vt, φ) =

∫ 2π

0
dH(~vt, ψ)h (sin(φ− ψ)) dψ where h(u) =

1

πu
(2.4)

The parallel Fan Beam Hilbert Projection Equality and inversion
formula

Theorem 2.3.1 (Parallel Fan Beam Hilbert Projection Equality).

pH(φ, s) = dH(~vt, φ), where s = ~vt · ~θ(φ) (2.5)

Let us consider a point ~x in the plane belonging to the line (φ, s) i.e.
~θ · ~x = s. If there exists a source vertex ~vt such that s = ~vt · ~θ(φ) i.e.~vt ∈
L(φ, s), i.e ~vt + R~ζ = ~x + R~ζ = s~θ + R~ζ, see Fig 2.5, then pH(φ, s) =
pH(φ, ~x · ~θ) needed for the FBP reconstruction at ~x can be computed from
g(~vt, ψ), ψ ∈ (−π/2, π/2) as soon as g(~vt, ·) is not truncated, even if pH(φ, ·)
is truncated.

Proof. We suppose that the line (φ, s) contains the vertex ~vt, i.e., ~vt · ~θ = s.
Without loss of generality, we translate the origin of the referential so that
~vt is the origin, i.e. ~vt = 0 and we rotate so that, φ = 0. We have with
φ = 0 and s = 0 in Eq. (2.3)

pH(0, 0) =

∫
R
p(0, t)h(−t)dt =

∫
R2

µ (t(1, 0) + l(0, 1)) dlh(−t)dt

=

∫
R2

µ (t, l)

−πt
dldt

We also have with ~vt = (0, 0) and φ = 0 in Eq. (2.4)

dH (~vt, φ) = dH ((0, 0), 0)

=

∫ 2π

0
g ((0, 0), ψ)h (sin(−ψ)) dψ

=

∫ 2π

0

∫ +∞

0
µ
(

(0, 0) + l~ζ(ψ)
)

dlh (sin(−ψ)) dψ

=

∫ 2π

0

∫ +∞

0

µ (l cos(ψ), l sin(ψ)) l

−π sin(ψ)l
dl

Let us make the polar to cartesian change of variables (r, t) = (l cosψ, l sinψ),
drdt = |l|dldψ, (l, ψ) ∈ R+ × [0, π), (r, t) ∈ R2.

dH (~vt, φ) =

∫
R2

µ(r, t)

−πt
drdt
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v(λ)

Figure 2.5: Parallel Fan Beam Hilbert Equality.

From theorem 2.5 we can derive a condition for the reconstruction of a
ROI

Condition 2.3.1 (Data conditions for the reconstruction of a ROI). A open
region of interest can be reconstructed provided each line passing through
the region of interest intersects the vertex path.

We can also propose an algorithm for the reconstruction of ~x in the ROI
satisfying the previous condition.

1. Hibert filtering and rebinning step: compute pH(φ, s) at s = ~θ(φ) · ~x
from d(t, φ) such that ~θ(φ) · ~x = ~θ(φ) · ~vt.

2. Derivation step: compute ∂pH
∂s (φ, s)

arroverts=~θ(φ)·~x and back project.

Virtual Fan Beam Projections inversion formula

2.3.2 Differentiated Backprojection with Hilbert filtering

Introduction

The idea of the Differentiated Backprojection is to compute the Hilbert
transform of µ along a direction ~α from the back projection of the devivation
of the projection. µ is then reconstructed from the inversion of the Hilbert
transform.
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Directional Hilbert transform

We consider a direction ~α ∈ S1 and and a function µ : R2 → R ; we define
H~α the Hilbert transform in the direction ~α by

H~αµ : R2 −→ R
~x −→ H~αµ(~x)

def
=
∫
R µ(~x− u~α)h(u)du =

∫
R
µ(~x−u~α)

πu du

We have
H−~αµ = −H~αµ

We naturally extend the definition to ~v 6= 0 by

H~vµ(~x)
def
=H ~v

‖~v‖
µ(~x)

Differentiated Backprojection

Differentiated Backprojection and Hilbert Transform

We consider the derivation according to the trajectory parameter t of the
Fan Beam projection

dD (~v(t), φ)
def
=

∂

∂t
d (~v(t), φ)

=
∂

∂t

∫ +∞

0
µ
(
~vt + l~θ(φ)

)
dl =

∂

∂t

∫ +∞

+∞
µ
(
~vt + l~θ(φ)

)
dl

=

∫ +∞

+∞

∂

∂t
µ
(
~vt + l~θ(φ)

)
dl

=

∫ +∞

+∞
∇µ

(
~vt + l~θ(φ)

)
· ∂
∂t
v(t)dl

where we have use v(t) /∈ Ω. Now, we consider
<
b t1,t2 the back projection of

dD on [t1, t2] ⊂ T

<
b t1,t2(~x)

def
=

1

π

∫ t2

t1

1

‖~x− ~vt‖

∫ +∞

+∞
∇µ

(
~vt + l~θ (arg (~x− ~vt))

)
· ∂
∂t
v(t)dldt

(2.6)
We remark that ~θ (arg (~x− ~vt)) = ~x−~vt

‖~x−~vt‖ . In Eq. (2.6) we make the change of

variables 1−u = l
‖~x−~vt‖ thus dt = dl

‖~x−~vt‖ and thus ~vt+l
~x−~vt
‖~x−~vt‖ = ~vt+(1−u) =

~x− u (~x− ~vt). We obtain

<
b t1,t2(~x) =

1

π

∫ t2

t1

∫ +∞

+∞

∂

∂t
v(t) · ∇µ (~x− u (~x− ~vt)) dudt

Moreover we have

∇µ (~x(1− u) + u− ~vt) ·
∂

∂t
v(t) =

1

u

∂

∂t
µ (~x(1− u) + u~vt)
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Thus we have

<
b t1,t2(~x) =

1

π

∫ +∞

+∞

1

u

∫ t2

t1

∂

∂t
µ (~x(1− u) + u~vt) dtdu

=
1

π

∫ +∞

+∞

1

u
(µ (~x− u (~x− ~vt2))− µ (~x− u (~x− ~vt1))) du

= H~x−~vt2µ(~x)−H~x−~vt1µ(~x)

We remark now that if ~x ∈ (~vt1 , ~vt2) then ~x − ~vt2 = k2 (~vt1 − ~vt2) with
k2 > 0 and ~x − ~vt1 = k1 (~vt1 − ~vt2) with k1 < 0. Thus, if ~x ∈ (~vt1 , ~vt2) we
have

<
b t1,t2(~x) = H~vt1−~vt2µ(~x) +H~vt1−~vt2µ(~x) = 2H~vt1−~vt2µ(~x)

If we now consider the back projection between t and t1 and the back pro-
jection between t and t2 typically for t1 < t < t2 with t1 and t2 such that
~x ∈ (~vt1 , ~vt2) we have

<
b t,t1(~x)+

<
b t,t2(~x) = H~x−~vt1µ(~x)−H~x−~vtµ(~x)+H~x−~vt2µ(~x)−H~x−~vtµ(~x) = 2H~vt−~xµ(~x)

because H~x−~vt1µ(~x) = H~vt2−~vt1µ(~x) = −H~x−~vt2 for ~x ∈ (~vt1 , ~vt2).

Inversion of the Finite Hilbert transform

DBP-H Inversion

2.3.3 Advances with DBP-H approaches

New Geometries

One Side Hilbert transform inversion

New appraoches for the interior problem
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Appendix A

Numerics

A.1 Fourier Transform

For more information on Fourier analysis and numerical application, see [9]
or [8].

A.1.1 DFT and Fourier coefficient of a function in L2
P (a)

Let L2
P (a) be the set of periodic functions of period a > 0 such that |f(t)|

on a period. Such a function f ∈ L2
P (a) can be expanded in a Fourier serie

f(t) =
+∞∑

n=−∞
cn(f)e

2iπnt
a , where cn(f) =

1

a

∫ a

0
f(t)e−

2iπnt
a dt.

The convergence of the serie
∑

n cn(f)e
2iπnt
a depends on the smoothness

of f . Point wise convergence is obtained for bounded variation functions
(Dirichlet’s theorem). Uniform convergence is obtained for C1 function and
for more regular functions the Fourier serie has a faster convergence.

A.1.2 Link between the Fourier Transform and the DFT

The Discrete Fourier Transform is linked to the approximation of the Fourier
coefficients cn(f) of the Fourier series of f ∈ L2

P (a). More precisely let
f ∈ CN a regular N -point discretization of f on [0, a[, i.e fl = f(tl) with
tl = l aN , l = 0, . . . , N − 1, and let F = DFT (f) be the Discrete Fourier
Transform of f then Fn ≈ cn(f), n = 0, . . . , N/2− 1 and Fn ≈ cn−N (f), n =
N/2, . . . , N − 1.

Let suppose now that f ∈ L2(R) is a real variable complex function of
compact support contained in [0, a]. Then f ∈ L1(R) and we have

f̂(σ) =

∫
R
f(s)e−2iπσsds =

∫ a

0
f(s)e−2iπσsds.

35
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Let fP (a) be the periodization of f of period a such that fP (a)(s) = f(s
mod a), see Fig. A.1. We have

f̂(σn) = acn
(
fP (a)

)
where σn =

n

a

thus the DFT can be considered a discretization of the Fourier Transform
for function of compact support. If the support of f is contained in a set
of length a > 0 and f is discretized on N points on the set [0, a] then 1

a

is the sampling step of the DFT in the Fourier, i.e., Fn ≈ 1
a f̂
(
n
a

)
, n =

0, . . . , N/2− 1 and Fn ≈ 1
a f̂
(
n−N
a

)
, n = N/2, . . . , N − 1.

The generalization to functions f of compact support contained in [b, c],

where a
def
= c− b > 0 is simple.

a

t

f(t)

a−a

t

fP (a)(t)

Figure A.1: Periodization fP (a) (right), of period a, of f a function of com-
pact support contained in [0, a] (left).

A.2 2D

A.2.1 Computing filters

The Hibert Filter

For numerical application we consider a frequency cut-off version of the
Hibert filtering (Low Pass approximation of the Hiber filter). We define hHc
such that ˆhHc(σ) = χ[−c,c](σ)(−isgn(σ)) where c > 0 is a cut-off frequency
parameter. Then

hHc(s) =

∫ c

−c
−isgn(σ)e2iπσsdσ =

1− cos(2πcs)

πs
.

We remark that if we choose c = 1
2h then whith sl = lh, l ∈ Z:

hHc(sl) =
1− cos(lπ)

lπh
=

{
2
lπh for l odd
0 for l even



Glossary

LpP (a) Space of periodic functions f of period a > 0 such that the integral
of |f |p exists with p > 0. 12
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Acronyms

FBP Filtered Back Projection. 13
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