
UGA, UFR IM2AG, Algorithmique, langages et programmation Fonctions, expressions, valeurs

1. Fonctions, expressions, valeurs

A. Eléments de cours
a) Types

Un type regroupe un ensemble de valeurs et les opérations qui lui sont associées. Au niveau
du langage, on définit le nom du type, l’ensemble des valeurs du type, les conventions pour les
dénoter et la spécification des opérations associées.
Types de base :

Nom du type entier réel caractère booléen
Dénotation des valeurs 563 35.4 ’a’ ’4’ ’ ;’ ’ ’ vrai faux

Opérations +,-,*,/,reste,quotient +,-,*,/ et,ou,non

Opérations de comparaison : =, 6=. Les opérandes doivent être de même type ; le résultat est
un booléen. Dans le cas d’un type muni d’une relation d’ordre, on utilise aussi : <,≤,>,≥.

b) Désignation d’expressions

Pour désigner par le nom x une sous-expression E d’une expression F, on écrit soit x=E dans
F. Cette phrase est une expression : son évaluation consiste à évaluer E dans le contexte où
elle apparaît puis à remplacer dans l’expression F toute occurrence de x par la valeur de E et
enfin à évaluer F. Ainsi l’expression E n’est évaluée qu’une fois avant l’évaluation de F.
Le nom x ainsi introduit est local à l’expression F, c’est-à-dire que l’association de la valeur de
E à x n’a de sens que dans l’expression F. On dit que la portée du nom x est l’expression F.
Par exemple, pour 3 associations, on écrit :

soit x1 = E1, x2 = E2, x3 = E3 dans F
Ces associations sont indépendantes les unes des autres : si dans une expression Ei on fait
référence à un nom xj (i 6=j), le nom xj tire sa signification du contexte englobant la construction
soit et non de l’expression Ej. Si l’on veut effectivement exprimer une dépendance, on doit
emboîter deux ou plusieurs constructions soit . . .dans

c) Expression conditionnelle

Une expression conditionnelle résulte d’une analyse par cas, les cas s’excluant mutuellement et
recouvrant le domaine de valeurs considéré.

La construction selon

La forme syntaxique selon explicite tous les cas : on énumère l’ensemble des couples <condition,
expression> dans un ordre quelconque. Chaque condition est décrite par une expression à valeur
booléenne. Les cas doivent couvrir le domaine et s’exclure mutuellement.
Par exemple, pour trois cas, on écrit :

selon { description du domaine }
C1 : E1
C2 : E2
C3 : E3

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

1.1

UGA, UFR IM2AG, Algorithmique, langages et programmation Fonctions, expressions, valeurs

Une telle phrase est une expression. Son évaluation comporte d’une part l’évaluation des ex-
pressions booléenne Ci pour déterminer celle qui a la valeur vrai et d’autre part l’évaluation
de la expression Ei correspondant au cas ainsi identifié. La valeur alors obtenue est la valeur
de l’expression conditionnelle. L’ordre dans lequel les cas sont énumérés n’est pas pertinent
vis-à-vis de l’évaluation.
On doit avoir :

(C1 ou C2 ou C3) et non (C1 et C2) et non (C1 et C3) et non (C2 et C3)
{ recouvrement et exclusion mutuelle }

Autres notations
— Les deux expressions suivantes ont le même sens :

si C alors E1 sinon E2 selon { description du domaine }
C : E1
non C : E2

— Lorsqu’il y a plus de deux cas on peut aussi utiliser le mot-clé sinon pour exprimer
que la condition correspond à tous les autres cas que ceux énumérés explicitement. Par
exemple les expressions suivantes ont le même sens :

selon { description du domaine } selon { description du domaine }
C1 : E1 C1 : E1
C2 : E2 C2 : E2
C3 : E3 C3 : E3
sinon : E4 non C1 et non C2 et non C3 : E4

Les opérateurs booléens conditionnels "et puis" et "ou alors"

A et B étant deux expressions à valeur booléenne :
— L’expression A et puis B et l’expression si A alors B sinon faux ont le même sens :

dans ces deux expressions, B n’est évalué que si A a la valeur vrai.
— De même les expressions A ou alors B et si A alors vrai sinon B ont le même sens :

B n’est évalué que si A a la valeur faux.

Expression conditionnelle à valeur booléenne
Une expression conditionnelle à valeur booléenne peut toujours être ré-écrite sous forme d’une
formule logique à l’aide de l’opérateur et puis. Par exemple, l’expression

selon
C1 : B1
C2 : B2
C3 : B3

peut s’écrire

(C1 et puis B1) ou (C2 et puis B2) ou (C3 et puis B3)

d) N-uplets, produit de types

Un n-uplet de valeurs est décrit entre des chevrons (< et >), les valeurs étant séparées par
des virgules. Le type d’un n-uplet est le produit (au sens ensembliste du terme) des types de
chacune des valeurs. Pour définir un produit de types, on peut de manière équivalente, ou bien
décrire un n-uplet de types ou bien décrire un n-uplet de champs, un champ étant formé d’un
nom et d’un type.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

1.2

UGA, UFR IM2AG, Algorithmique, langages et programmation Fonctions, expressions, valeurs

Description d’un type produit sans noms de champs
On décrit le type produit entre des chevrons, les types étant séparés par des virgules. On peut
par exemple définir un type date de la manière suivante :

date : type <entier sur [1. . .31], entier sur [1. . .12], un entier ≥ 0 >
{ <j, m, a> étant de type date, j est le quantième du jour dans le mois, m est le quantième du mois
dans l’année et a est l’année. }

Pour sélectionner les valeurs qui composent un objet de type produit défini sans noms de
champs, il faut utiliser une expression pour nommer ces valeurs. Par exemple, si D est de type
date, on écrit : soit <j, m, a> = D dans ••••
Description d’un type produit avec noms de champs
On définit le type produit en énumérant les champs entourés de chevrons et séparés par des
virgules. Dans l’exemple des dates, on écrit maintenant :

date : type <qj : entier sur [1. . .31], qm : entier sur [1. . .12], qa : entier ≥ 0 >

Dans cette forme, on sélectionne les valeurs qui composent une valeur de type date en utilisant
les noms de champs qj, qm et a qui font partie de la définition du type : D étant une date de
valeur < 9, 10, 1964 >, D.qj vaut 9, D.qm vaut 10 et D.qa vaut 1964.

e) Textes et caractères

Le type caractère rassemble tous les caractères (en particulier, l’espace est un caractère comme
les autres). Un caractère est dénoté en l’entourant de quotes (’). Les seules opérations attachées
au type caractère sont les opérations de comparaison (= et 6=).

Le type texte regroupe toutes les chaînes de caractères, quelle que soit leur longueur. Un texte
est dénoté en l’entourant de guillemets ("). Ceci est nécessaire pour distinguer un caractère et
le texte singleton formé du même caractère. Par exemple, ’a’ est de type caractère alors que
"a" est de type texte. Le texte vide est noté [].

Le type texte est muni des opérations suivantes (de manière plus générale ces opérations sont
définies pour toute séquence) :

— L’opération de concaténation de deux textes est notée &.

— Les symboles ◦ et • dénotent respectivement l’ajout d’un caractère
à gauche d’un texte et l’ajout d’un caractère à droite d’un texte :
c◦t = [c] & t t•c = t&[c]

— EstVide(t) a la valeur vrai si le texte t est vide.

— premier(t) dénote le premier caractère du texte t ; fin(t) dénote le texte formé de t sans
son premier caractère : t = premier(t) ◦ fin(t).

— dernier(t) dénote le dernier caractère du texte t ; début(t) dénote le texte formé de t sans
son dernier caractère : t = début(t) • dernier(t).

— Les opérations premier, fin, dernier et début ne peuvent pas être appliquées à un texte
vide.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

1.3

UGA, UFR IM2AG, Algorithmique, langages et programmation Fonctions, expressions, valeurs

B. Exemples d’exercices rédigés
Exemple E1.1 : Moyenne olympique
La moyenne olympique de n nombres est la moyenne des n-2 nombres restant après avoir enlevé
deux des nombres donnés, l’un ayant la valeur maximum et l’autre la valeur minimum.
Décrire une fonction qui étant donnés quatre entiers positifs ou nuls, leur associe leur moyenne
olympique. Par exemple, la moyenne olympique des quatre nombres 10, 8, 12, 24 est 11, celle
des nombres 12, 12, 12, 12 est 12.

{ spécification des fonctions }
mo : fonction (u, v, w, x : entier ≥ 0) −→ réel ≥ 0 { moyenne olympique de 4 nombres }
minquatre : fonction (i, j, k, l : entier ≥ 0) −→ entier ≥ 0 { minimum de 4 nombres }
maxquatre : fonction (i, j, k, l : entier ≥ 0) −→ entier ≥ 0 { maximum de 4 nombres }
maxdeux, mindeux : fonction (a,b : deux entiers ≥ 0) −→ entier ≥ 0 { maximum et minimum de 2 nombres }

{ réalisation des fonctions }
maxdeux(a,b) :

retour : (a+b + abs(a-b)) / 2
mindeux(a,b) :

retour : (a+b - abs(a-b)) / 2
maxquatre(i,j,k,l) :

retour : maxdeux (maxdeux (maxdeux(i,j), k), l)
minquatre(i,j,k,l) :

retour : mindeux (mindeux (mindeux(i,j), k), l)
mo(u, v, w, x) :

retour : (u+v+w+x - minquatre(u,v,w,x) - maxquatre(u,v,w,x)) / 2

Exemple E1.2 : Maximum de trois entiers
Décrire une fonction qui détermine le maximum de trois entiers distincts deux à deux. Etudier
diverses solutions selon la manière de conduire l’analyse par cas et de la formuler.

Maxtrois : fonction (a, b, c : entier) −→ entier { maximum de 3 nombres distincts deux à deux }

(i) Analyse en 3 cas fondée sur l’analyse du résultat

Maxtrois(a, b, c) :
retour : selon a, b, c

a>b et a>c : a
b>a et b>c : b
c>a et c>b : c

(ii) Analyse en 6 cas fondée sur l’analyse des données

Maxtrois(a, b, c) :
retour : selon a, b, c

a>b et b>c : a
b>a et a>c : b
a>c et c>b : a
c>a et a>b : c
b>c et c>a : b
c>b et b>a : c

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

1.4

UGA, UFR IM2AG, Algorithmique, langages et programmation Fonctions, expressions, valeurs

(iii) Analyses en deux cas emboîtées fondées sur l’analyse des données

Maxtrois(a, b, c) :
retour : si a > b alors

si a > c alors a
sinon { a < c } c

sinon { a < b }
si b > c alors b
sinon { b < c } c

(iv) Utilisation d’un nom local (pour décrire le maximum des deux premiers)

Maxtrois(a, b, c) :
retour : soit M = si a > b alors a sinon b

dans si M > c alors M sinon c

(v) Utilisation d’une fonction plus simple (Maxdeux)

Maxtrois(a, b, c) :
retour : Maxdeux(Maxdeux(a, b), c)

Exemple E1.3 : Somme des chiffres d’un nombre
Décrire une fonction qui à un entier compris entre 0 et 9999 associe la somme des chiffres qui
le composent dans sa représentation en base 10. Exemple : donnée 9639, résultat : 27.

SC : fonction (n : entier sur [0. . .9999]) −→ entier ≥ 0
{ Somme des chiffres de la représentation en base 10 de n. }

Les chiffres formant l’entier donné peuvent être déterminés à l’aide de divisions par 10. On
introduit une fonction qui à deux nombres associe le quotient et le reste de leur division :

QR : fonction (N : entier ≥ 0, D : entier > 0) −→ entier ≥ 0, entier ≥ 0
{ soit <q, r> = QR (N, D), q est le quotient et r le reste de la division de N par D }

QR (N, D) :
retour : <N quotient D, N reste D>

{ quotient et reste sont des primitives correspondant à la division entière }

On peut alors réaliser la fonction SC, par exemple comme suit :

SC(X) :
retour : soit <q1, c0> = QR (X, 10)

dans soit <q2, c1> = QR (q1, 10)
dans soit <c3, c2> = QR (q2, 10)

dans c0 + c1 + c2 + c3

Exemple E1.4 : A propos de durées
On considère ici des durées représentées par des quadruplets <j, h, m, s> où j représente un
nombre de jours, h un nombre d’heures dans une journée, m un nombre de minutes dans une
heure et s un nombre de secondes dans une minute. On étudie des opérations sur les durées.

(i) Spécification des types et des fonctions

{ types et fonctions sur les entiers }
Ent60 : type entier sur [0. . .59] ; Ent24 : type entier sur [0. . .23]

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

1.5

UGA, UFR IM2AG, Algorithmique, langages et programmation Fonctions, expressions, valeurs

QR : fonction (N : entier ≥ 0, D : entier > 0) −→ entier ≥ 0, entier ≥ 0 { quotient et reste, cf. E1.3 }
LeNbDeSec : fonction (j, h, m, s : entier ≥ 0) −→ entier ≥ 0

{ Equivalent en secondes de j jours, h heures, m minutes et s secondes (sans contrainte sur leurs
valeurs). }

{ le type Durée et les fonctions associées }
Durée : type <entier ≥ 0, Ent24, Ent60, Ent60>

{ durée sous forme canonique composée d’un nombre de jours, d’un nombre d’heures, d’un nombre
de minutes et d’un nombre de secondes. }

{ constructeurs }
LaDurée_E : fonction (E : entier ≥ 0) −→ Durée

{ construction d’une durée à partir d’un nombre de secondes }
LaDurée_4E : fonction (j, h, m, s : entier ≥ 0) −→ Durée

{ construction d’une durée à partir de quatre entiers représentant un nombre de jours, d’heures,
de minutes et de secondes, (sans contrainte sur leurs valeurs) }

{ sélecteur }
LesSec : fonction (D : Durée) −→ entier ≥ 0 { nombre total de secondes d’une durée }

{ autres fonctions sur les durées }
EgD : fonction (D1, D2 : Durée) −→ booléen { égalité de deux durées }
InfD : fonction (D1, D2 : Durée) −→ booléen { relation "inférieur strict" sur les durées }
SomD : fonction (D1, D2 : Durée) −→ Durée { somme de deux durées }

(ii) Réalisation des fonctions sur les durées

{ égalité de deux durées }
{ version 1 }

EgD(D1, D2) :
retour : LesSec(D1) = LesSec(D2)

{ version 2 }
EgD(D1, D2) :

retour : soit <j1, h1, m1, s1> = D1, <j2, h2, m2, s2> = D2
dans j1 = j2 et h1 = h2 et m1 = m2 et s1 = s2

Une autre formulation :
EgD(<j1, h1, m1, s1>, <j2, h2, m2, s2>) :

retour : j1 = j2 et h1 = h2 et m1 = m2 et s1 = s2

{ relation inférieur sur les durées }
{ version 1 }

InfD (D1, D2) :
retour : LesSec(D1) < LesSec(D2)

{ version 2 }
InfD (<j1, h1, m1, s1>, <j2, h2, m2, s2>) :

retour : si j1 6= j2 alors j1 < j2
sinon { j1=j2 } si h1 6= h2 alors h1 < h2

sinon { j1=j2 et h1=h2 }
si m1 6= m2 alors m1 < m2
sinon { j1=j2 et h1=h2 et m1 = m2 } s1 < s2

{ somme de deux durées }
{ version 1 }

SomD (D1, D2) :
retour : LaDurée_E(LesSec(D1) + LesSec(D2))

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

1.6

UGA, UFR IM2AG, Algorithmique, langages et programmation Fonctions, expressions, valeurs

{ version 2 }
SomD (<j1, h1, m1, s1>, <j2, h2, m2, s2>) :

retour : soit <m,ss> = QR(s1+s2, 60)
dans soit <h, sm> = QR(m+m1+m2, 60)

dans soit <j, sh> = QR(h+h1+h2, 24)
dans <j+j1+j2, sh, sm, ss>

(iii) Réalisation des constructeurs et sélecteurs sur les durées

LaDurée_E(n) :
retour : soit <j, rj> = QR(n, 86400)

dans soit <h, rh> = QR(rj, 3600)
dans soit <m, s> = QR(rh, 60)

dans <j, h, m, s>
LaDurée_4E(j, h, m, s) :

retour : LaDurée_E(LeNbDeSec(j, h, m, s))
LesSec(<j, h, m, s>) :

retour : LeNbDeSec(j, h, m, s)

(iv) Réalisation des fonctions sur les entiers

QR(a, b) :
retour : <a quotient b, a reste b>

LeNbDeSec(j, h, m, s) :
retour : 86400*j + 3600*h + 60*m + s

C. Exercices
E1.5 : A propos de booléens

— Donner les tables de vérité des opérateurs booléens non, et, ou. Puis étudier les tables
de vérité définissant les autres opérateurs booléens binaires et identifier les opérateurs
connus.

— Exprimer les opérateurs de comparaison ≤, 6= , >, ≥ en termes des opérateurs non, = ,
<.

— Pour représenter le type booléen à l’aide du type entier, on décide que les constantes
vrai et faux sont respectivement représentées par les entiers 1 et 0. Donner les expres-
sions correspondant aux opérateurs booléens usuels en termes des opérateurs arithmé-
tiques.

E1.6 : Signe du produit
Etant donnés deux entiers, on veut, sans calculer leur produit, fournir, l’un des deux mes-
sages suivants : "le produit des deux nombres est positif ou nul" ou "le produit des deux nombres
est négatif".

SignProd : fonction (x, y : entier) −→ texte

Compléter chacune des réalisations suivantes de la fonction SignProd.

(i) Version 1 : analyse en deux cas

SignProd (x, y) :
retour : "le produit des deux nombres est " & (si •••••• alors "positif ou nul" sinon "négatif")

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

1.7

UGA, UFR IM2AG, Algorithmique, langages et programmation Fonctions, expressions, valeurs

(ii) Version 2 : analyses par cas emboîtées

SignProd (x, y) :
retour : "le produit des deux nombres est " &

si x > 0 alors ••••••
sinon si x < 0 alors ••••••

sinon { x=0 } ••••••

E1.7 : Une date est-elle correcte ?
On considère une date représentée par deux entiers, un numéro de jour dans le mois et un numéro
de mois dans l’année. On veut déterminer si deux entiers j et m caractérisent respectivement
le jour et le mois d’une date d’une année non bissextile. Par exemple, c’est vrai pour j = 28 et
m = 1 ; mais cela ne l’est pas pour j = 31 et m = 4, ni pour j = 18 et m = 13.

EstDate : fonction (j, m : entier) −→ booléen
{ vrai ⇐⇒ j et m caractérisent respectivement le jour et le mois d’une date d’une année non bissextile
}

— Compléter la réalisation suivante de la fonction :
EstDate(j,m) :

retour : 1 ≤ ••• et ••• ≤ 12 et
1 ≤ j et j ≤ (si ••• alors 31

sinon si ••• alors 28
sinon ••••••••)

— Proposer d’autres réalisations de la fonction.

E1.8 : Codage d’un texte : code de César
On désire coder un texte ne comportant que des lettres majuscules et des espaces, en remplaçant
chaque caractère par un autre caractère selon les règles suivantes (code dit "de César") :

— À un espace correspond un espace,

— À la lettre ’A’ correspond la lettre ’D’, à ’B’ correspond ’E’, . . ., à ’W’ correspond ’Z’,
à ’X’ correspond ’A’, à ’Y’ correspond ’B’, à ’Z’ correspond ’C’.

Inversement, on veut pouvoir décoder un texte codé selon ce qui précède.
Pour cela on étudie deux fonctions, de codage et de décodage d’un caractère :

CodeCar : fonction (C : caractère { lettre majuscule ou espace }) −→ caractère
DécodeCar : fonction (C : caractère { lettre majuscule ou espace }) −→ caractère

(i) Une solution adaptée directement au problème posé
Si l’on veut procéder à la main, on place deux exemplaires de l’alphabet (dans l’ordre), l’un
sous l’autre, en décalant le deuxième de trois positions à droite, et en complétant la deuxième
ligne par les trois premières lettres de l’alphabet.
Codage et décodage se font alors aisément, une lettre et son code se trouvant alignés sur la
même colonne. De même, pour réaliser chacune des deux fonctions CodeCar et DécodeCar
il suffit de les décrire par une expression conditionnelle à 27 cas : 1 cas pour l’espace et 1 cas
pour chacune des 26 lettres de l’alphabet.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

1.8

UGA, UFR IM2AG, Algorithmique, langages et programmation Fonctions, expressions, valeurs

(ii) Une solution plus générale
Le code de César est fondé sur une translation sur l’alphabet : les lettres étant rangées de
manière circulaire dans l’ordre alphabétique (A puis B puis C, . . ., puis Z, puis A), le code
d’une lettre est la lettre située 3 positions après elle.
L’idée de cette deuxième version est d’assurer le codage en associant à chaque lettre un entier,
par exemple son rang dans l’alphabet et à utiliser les opérations sur les entiers pour exprimer
la translation.
Ceci est illustré par le schéma suivant :

— L dénote une lettre quelconque et L’ dénote le code de L ;
— E dénote l’entier associé à L, E’ dénote l’entier associé à L’ ;
— Les flèches sont étiquetées par un nom de fonction. Les flèches en pointillé montrent

la manière de réaliser les fonctions étiquetant les flèches pleines par composition des
fonctions étiquetant les flèches en pointillé.

L L’
CodeCar

E E’

RangCar

Plus3

IemeCar

Figure 1.1 – Principe du codage de César

Les trois fonctions intermédiaires apparaissant sur le schéma sont spécifiées comme suit :

Plus3 : fonction (E : entier sur [1. . .26]) −→ entier sur [1. . .26]
{ E étant associé à L, Plus3(E) est l’entier associé à L’ }

RangCar : fonction (L : lettre majuscule) −→ entier sur [1. . .26]
{ Rang de la lettre donnée dans l’alphabet }

IèmeCar : fonction (E : entier sur [1. . .26]) −→ lettre majuscule
{ Lettre de rang E dans l’alphabet }

Q1
— Donner une réalisation de la fonction CodeCar en utilisant les fonctions intermédiaires.
— Donner une réalisation de la fonction Plus3.
— Donner de même une réalisation de la fonction DécodeCar en se basant sur un principe

analogue à ce qui a été fait pour CodeCar.

(iii) Généralisation
On généralise le principe du codage en se basant sur une translation de n positions dans l’al-
phabet (n = 3 étant le cas particulier précédent).

Q2
— Spécifier les fonctions de codage et de décodage.
— Réaliser la fonction de codage en spécifiant, réalisant et utilisant les fonctions intermé-

diaires adéquates.
— Réaliser la fonction de décodage en n’utilisant que la fonction de codage.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

1.9

UGA, UFR IM2AG, Algorithmique, langages et programmation Fonctions, expressions, valeurs

E1.9 : Relations sur des intervalles d’entiers
On caractérise un intervalle fermé d’entiers par la donnée de ses bornes inférieure et supérieure.

Intervalle : type <entier, entier>
{ <i, s> décrit un intervalle de borne inférieure i et de borne supérieure s.
Contrainte : i ≤ s. }

(i) Relations entre points et intervalles
Pour situer un entier par rapport à un intervalle, on spécifie les trois fonctions suivantes :

Précède : fonction (x : entier, I : Intervalle) −→ booléen { vrai ⇐⇒ x < borne inférieure de I }
Dans : fonction (x : entier, I : Intervalle) −→ booléen { vrai ⇐⇒ x appartient à I }
Suit : fonction (x : entier, I : Intervalle) −→ booléen { vrai ⇐⇒ x > borne supérieure de I }

— En utilisant des opérateurs logiques donner une réalisation des fonctions Précède et
Dans.

— Donner une réalisation de la fonction Suit en utilisant les deux fonctions précédentes.

(ii) Relations entre intervalles
Donner une réalisation de chacune des deux fonctions suivantes :

CoteAcote : fonction (I1, I2 : Intervalle) −→ booléen
{ vrai ⇐⇒ I1 et I2 sont contigus. Exemples : <1,3>, <4, 10> ; <2, 8>,<-1,1> }

Chevauche : fonction (I1, I2 : Intervalle) −→ booléen
{ vrai ⇐⇒ I1 et I2 ont des points communs, ils n’ont pas de bornes communes et aucun n’est inclus
dans l’autre. }

E1.10 : Fractions
On étudie un type correspondant à la notion de fraction. On veut pouvoir construire des frac-
tions à partir de deux entiers correspondant au numérateur et au dénominateur, fournir le texte
d’une fraction et disposer des opérations sur les fractions. Les valeurs manipulées sont donc des
entiers, des textes et des fractions.

Q1. Spécification et réalisation d’un type Fraction
Il s’agit de spécifier le type Fraction et les fonctions de construction et de sélection associées
selon les indications ci-dessous. On travaillera par analogie avec l’exemple E1.4.

Un objet de type Fraction est un couple d’entiers (produit de types) formé du numérateur et
du dénominateur de la forme irréductible de la fraction considérée.

La fonction de construction d’un objet de type Fraction, nommée Frac a pour paramètre
deux entiers correspondant au numérateur et au dénominateur de la fraction considérée éven-
tuellement sous forme non réduite : par exemple, Frac(21, 60) construit le couple <7, 20>, tout
comme Frac(42, 120) ou Frac(7, 20).

Pour mettre une fraction sous forme irréductible, on dispose d’une fonction de calcul du plus
grand commun diviseur de deux nombres, dont le profil est le suivant :

pgcd : fonction (n1. n2 : entier > 0) −→ entier > 0.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

1.10

UGA, UFR IM2AG, Algorithmique, langages et programmation Fonctions, expressions, valeurs

Q2. Utilisation du type Fraction
Réaliser les fonctions suivantes :

SomFrac : fonction (F1, F2 : Fraction) −→ Fraction { somme de deux fractions }
TexteFrac : fonction (F : Fraction) −→ texte

{ texte décrivant une fraction, par exemple TexteFrac (Frac (4, 6)) = "2 / 3"
Exemple d’utilisation : l’expression TexteFrac (SomFrac (Frac (3, 4), Frac (15, 18))) a pour valeur
"19/12". }

On dispose de la fonction LeTexteE construisant le texte de la représentation décimale d’un
entier :

LeTexteE : fonction (E : entier) −→ texte
{ texte de la représentation décimale d’un entier. Par exemple : LeTexteE (125) = "125" }

D. Problèmes dirigés
E1.11 : A propos d’une nomenclature de pièces
On considère ici un aspect de l’informatisation d’un stock de pièces d’un magasin de fournitures,
pour automobiles par exemple, et plus particulièrement la manière de référencer ces pièces.

Une nomenclature rassemble l’ensemble des conventions permettant de regrouper les pièces en
différentes catégories et d’associer à chaque pièce une référence unique servant à la désigner.
Ces conventions sont ici les suivantes :

— A un premier niveau, les pièces sont réparties en familles. Chaque famille est codée par
une lettre majuscule. On peut donc répertorier au plus 26 familles.

— A un deuxième niveau, on code les pièces dans chaque famille, par un entier entre 0 et
999. On peut donc répertorier au plus 1000 pièces dans chaque famille.

La forme externe d’une référence est ainsi formée de 4 caractères, la lettre codant la famille,
puis les trois chiffres codant la pièce (avec des zéros en tête si nécessaire). Par exemple, la
référence B053 désigne la pièce de numéro 053 dans la famille B alors que la référence C053
désigne la pièce de numéro 053 dans la famille C.

(i) Type associé à la notion de référence

Pour représenter les références, on définit le type Réf, selon le lexique suivant :

LettreMaj : type caractère { restreint aux lettres majuscules }
Réf : type <CFam : LettreMaj, NumP : entier sur [0. . .999]>

Par exemple, <’X’, 4> est la valeur de type Réf correspondant à la référence X004.
On considère une fonction, nommée TexteVersRéf, spécifiée comme suit :

TexteVersRéf : (T : texte) −→ Réf
{ Valeur de type Réf associée à T.
Par exemple : TexteVersRéf ("X340") = <’X’, 340>, TexteVersRéf ("X041") = <’X’, 41>
Pré-condition : T est formé d’une lettre suivie de 3 chiffres. }

Pour réaliser la fonction TexteVersRéf, on introduit une fonction nommée CvE :

Chiffre : type caractère { restreint aux caractères dénotant des chiffres }
CvE : fonction (C : Chiffre) −→ entier

{ valeur entière correspondant au chiffre. Par exemple, CvE(’2’) = 2 ; CvE(’0’) = 0 }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

1.11

UGA, UFR IM2AG, Algorithmique, langages et programmation Fonctions, expressions, valeurs

Q1. Donner une réalisation de la fonction TexteVersRéf en termes de CvE.

Q2. Réalisation de la fonction CvE
— Donner une réalisation de la fonction CvE sous forme d’une expression conditionnelle.
— On dispose de plus des éléments de lexique suivant :

AlphabetChif : texte "0123456789"
Rang : fonction (C : caractère, T : texte non vide de caractères distincts deux à deux) −→ entier > 0

{ Rang de C dans T. Le rang du premier élément de T est 1.
Pré-condition : C appartient à T. }

Donner une autre réalisation de la fonction CvE en termes de la fonction Rang.

(ii) Relation d’ordre sur les références
L’ordre sur les références que nous étudions ici est défini de la manière suivante : la priorité
est donnée aux codes de familles par rapport aux numéros de pièces. L’ordre sur les familles
est l’ordre alphabétique, l’ordre sur les numéros de pièce est celui des entiers. Par exemple la
référence B300 est avant la référence C230, (parce que B précède C dans l’ordre alphabétique)
et la référence U817 est après la référence U653 (parce que 817 est strictement supérieur à
653).

Pour représenter cette relation d’ordre, on spécifie les deux fonctions suivantes :

EgR : fonction (R1, R2 : Réf) −→ booléen { vrai ⇐⇒ les deux valeurs données sont identiques }
InfR : fonction (R1, R2 : Réf) −→ booléen { vrai ⇐⇒ R1 est strictement avant R2 }

Pour comparer des références, on doit donc pouvoir comparer des lettres de l’alphabet. On fait
abstraction du codage interne des lettres et on suppose que les seules opérations de comparaison
prédéfinies sur les lettres sont l’égalité (notée =) et la différence (notée 6=).

On spécifie ainsi une fonction nommée InfL comme suit :

InfL : fonction (L1, L2 : LettreMaj) −→ booléen
{ vrai ⇐⇒ L1 précède strictement L2 dans l’ordre alphabétique. Par exemple InfL(’L’, ’X’) = vrai ;
InfL(’U’, ’U’) = faux }

Q3. Réalisation des fonctions EgR et InfR
— Donner une réalisation de chacune des deux fonctions EgR et InfR, en termes des

opérations de comparaison sur les entiers, et de celles sur les lettres de l’alphabet (=, 6=,
InfL).

— Spécifier les autres fonctions permettant de comparer des références, analogues aux opé-
rateurs habituels sur les entiers (6=, >,≤,≥) puis en donner une réalisation (en exploitant
les relations qui existent entre les opérateurs de comparaison).

Q4. Réalisation de la fonction InfL
Pour réaliser la fonction InfL, on introduit le lexique suivant :

TexteMaj : type texte { formé de LettreMaj en ordre alphabétique }
AlphabetMaj : TexteMaj = ”ABCDEFGHIJKLMNOPQRSTUVWXYZ”

— Donner une réalisation de la fonction InfL en utilisant la fonction Rang (cf Q2).
— InfL(L1, L2) a la valeur vrai si et seulement si L1 se trouve avant L2 dans une liste

des lettres de l’alphabet classée en ordre alphabétique. Pour réaliser InfL selon cette
idée, on dispose de la fonction suivante (que l’on ne demande pas de réaliser) :

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

1.12

UGA, UFR IM2AG, Algorithmique, langages et programmation Fonctions, expressions, valeurs

EstAvant : fonction (L1, L2 : LettreMaj différentes, T : TexteMaj de longueur ≥ 2) −→ booléen
{ vrai ⇐⇒ L1 est avant L2 dans T. Contrainte : L1 et L2 doivent appartenir à T.
}

Donner une deuxième réalisation de la fonction InfL en utilisant la fonction EstAvant.

E1.12 : Quelle heure est-il ?
(i) Le type HeureDuJour

On étudie l’information portée par une montre concernant l’heure dans la journée. Elle est
décrite ici par un type nommé HeureDuJour, quadruplet formé de trois entiers et un booléen.
Les entiers représentent une durée de 0 à 12 heures, exprimée en heures, minutes et secondes.
Le booléen indique si l’heure du jour est située entre minuit et midi (avant midi, en latin ante
meridiem, en abrégé am) ou entre midi et minuit (après midi, en latin post meridiem, en abrégé
pm).

HeureDuJour : type
< nbh : entier sur [0. . .11] { nombre d’heures }

nbm, nbs : entier sur [0. . .59] { nombres de minutes et de secondes }
avant : booléen > { vrai si avant midi, faux sinon }

Par exemple, le quadruplet <3,0,0,faux> représente l’heure exprimée habituellement par "3h-
pm" ou par "15h". De même, <2,25,30,vrai> représente "2h25mn30s-am". On note que
<0,0,0,vrai> correspond à minuit et que <0,0,0,faux> correspond à midi.

Q1. Plus 1 seconde

— Donner une réalisation de la fonction Plus1S spécifiée de la manière suivante :
Plus1S : fonction (X : HeureDuJour) −→ HeureDuJour

{ Heure du jour à la seconde suivant l’heure X. Par exemple, Plus1S(<2,25,30,vrai>)
= <2,25,31,vrai> et Plus1S(<11,59,59,faux>) = <0,0,0,vrai> }

— Donner une réalisation de la fonction InfH spécifiée de la manière suivante :
InfH : fonction (X1, X2 : HeureDuJour) −→ booléen

{ vrai ⇐⇒ H1 précède strictement H2 (ordre chronologique). }

(ii) Le texte représentant l’heure
On veut construire le texte représentant une heure d’horloge selon les conventions suivantes :

— On utilise les suffixes "-am" et "-pm" pour distinguer les heures avant midi de celles
après midi.

— Chaque quantité est suivie de son unité : h pour heure, mn pour minute, s pour seconde.
Par exemple, LeTexteH(<11,34, 20, faux) = "11h34mn20s-pm".

— Lorsque l’heure comporte une quantité nulle, l’indication correspondante est omise dans
le texte. Par exemple, LeTexteH(<11,0,5,faux>) = "11h5s-pm", LeTexteH(<3,0,0,vrai>)
= "3h-am".

— Toutefois, lorsque les trois entiers sont nuls, le texte est "minuit" ou "midi" selon le cas.

On étudie ainsi la réalisation d’une fonction LeTexteH :

LeTexteH : fonction (X : HeureDuJour) −→ texte
{ Texte décrivant X avec les conventions ci-dessus }

Pour construire les parties du texte correspondant à chaque unité de temps, en tenant compte
du cas des quantités nulles, on introduit une fonction nommée LeTexteU :

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

1.13

UGA, UFR IM2AG, Algorithmique, langages et programmation Fonctions, expressions, valeurs

LeTexteU : fonction (e : entier ≥ 0, s : texte) −→ texte
{ Texte vide si e=0, sinon la représentation décimale de e suivie de s. Par exemple, LeTex-
teU(25,"mn")="25mn", LeTexteU(0,"mn")=[] }

De plus, on dispose de la fonction LeTexteE (dont la réalisation n’est pas demandée) :

LeTexteE : fonction (E : entier) −→ texte
{ texte de la représentation décimale d’un entier. Par exemple : LeTexteE (125) = "125" }

Q2. Donner une réalisation de la fonction LeTexteU en termes de la fonction LeTexteE.
Puis donner une réalisation de la fonction LeTexteH en termes de la fonction LeTexteU.

E1.13 : A propos de dates
Parmi les diverses formes d’expression de la date d’un jour dans le calendrier grégorien, nous
nous intéressons à la suivante : une date, en français, est caractérisée par un triplet d’entiers
composé du quantième du jour dans le mois, du quantième du mois dans l’année et de l’année.
Ainsi, le triplet 22, 9, 1990 caractérise le 22ème jour du 9ème mois de l’année 1990.

On ne considère ici que des dates prises dans la période [1900. . .2100]. On rappelle qu’une
année est bissextile si son expression numérale est divisible par 4, comme 1968, 1972, 1976,
. . .Toutefois les années séculaires ne sont pas bissextiles, sauf celles dont les deux premiers
chiffres forment un nombre divisible par 4, comme 1600, 2000, 2400.

Dans ce qui suit, on étudie diverses fonctions sur les dates.

(i) Informations caractérisant une date
La période considérée est caractérisée par ses années de début et de fin. Une année est dénotée
par un entier compris entre ces deux années. Un quantième d’une date dans une année est
désigné par un entier compris entre 1 et 366 ou 365 selon que l’année est bissextile ou non. Un
jour de mois est dénoté par un entier dont l’intervalle de définition dépend du nombre de jours
du mois considéré, mais il est inclu dans l’intervalle [1...31]. Un mois est dénoté par un entier
compris entre 1 et 12.
On fixe ainsi le lexique suivant :

NjourM : type entier sur [1. . .31] { numérotation des jours dans le mois }
quantième : type entier sur [1. . .366] { numérotation des jours dans l’année }
Nmois : type entier sur [1. . .12] { numérotation des mois dans l’année }
AnDeb : entier 1900 ; AnFin : entier 2100
année : type entier sur [AnDeb. . .AnFin]

De plus, on dispose de la fonction LeTexteE :

LeTexteE : fonction (E : entier) −→ texte
{ texte de la représentation décimale d’un entier. Par exemple : LeTexteE (125) = "125" }

(ii) Quantième d’une date dans son année
On étudie une fonction QuantièmeJMA :

QuantièmeJMA : fonction (J : NjourM, M : Nmois, A : année) −→ quantième
{ valeur du quantième dans l’année d’une date donnée sous forme de trois entiers correspondant au
jour dans le mois, au mois dans l’année et à l’année. Par exemple, QuantièmeJMA(15,11,1993) =
319 }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

1.14

UGA, UFR IM2AG, Algorithmique, langages et programmation Fonctions, expressions, valeurs

Pour déterminer le quantième d’une date dans son année, on se ramène au quantième du premier
jour d’un mois donné dans le cas d’une année non bissextile. On spécifie ainsi la fonction :

PremierJour : fonction (M : Nmois) −→ quantième
{ quantième du premier jour du mois donné dans le cas d’une année non bissextile }

Q1.
— Réaliser la fonction QuantièmeJMA dans le cas d’une année non bissextile.
— Puis compléter la réalisation précédente pour tenir compte des années bissextiles. On

spécifie pour cela une fonction supplémentaire :

EstBis : fonction (A : année) −→ booléen { vrai ⇐⇒ l’année est bissextile }

— Réaliser la fonction EstBis en tenant compte de la période considérée.

(iii) Texte associé à une date

On considère une fonction LeTexteD :

LeTexteD : fonction (J : NjourM, M : Nmois, A : année) −→ texte { texte de la date donnée }
{ Par exemple, LeTexteD(15,11,1993) = "15 Novembre 1993" ; LeTexteD(1, 11, 1993) = "1er No-
vembre 1993". }

On introduit une fonction LeNomDeMois :

LeNomDeMois : fonction (M : Nmois) −→ texte { nom en français du mois de numéro donné }

Q2. Réaliser la fonction LeTexteD en utilisant la fonction LeNomDeMois.

(iv) Date du lendemain On considère une fonction DemainJMA :

DemainJMA : fonction (J : NjourM, M : Nmois, A : année) −→ texte
{ texte d’une date correspondant au lendemain d’une date donnée , ou message si la date est la
dernière de la période }

On introduit une fonction LeLendemain :

LeLendemain : fonction (J : NjourM, M : Nmois, A : année) −→ NjourM, Nmois, année
{ Date du lendemain d’une date.
Contrainte : la date donnée n’est pas la dernière de la période. }

Pour déterminer la date du lendemain, il faut savoir si c’est la fin d’un mois et pour cela
connaître le dernier jour de chaque mois :

FinDeMois : fonction (J : NjourM, M : Nmois, A : année) −→ booléen
{ vrai ⇐⇒ la date donnée est le dernier jour du mois }

DernierJour : fonction (M : Nmois) −→ NjourM
{ dernier jour du mois, dans le cas d’une année non bissextile }

Q3. Réaliser successivement les fonctions DemainJMA, LeLendemain, FinDeMois.

(v) Informations attachées à la notion de mois

Q4. Réaliser les fonctions LeNomDeMois, DernierJour et PremierJour.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

1.15

UGA, UFR IM2AG, Algorithmique, langages et programmation Fonctions, expressions, valeurs

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

1.16

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

2. Raisonner sur les actions

A. Eléments de cours
a) Terminologie et éléments de langage

a.1. Variable

Les variables ont pour rôle de modéliser les informations des problèmes que l’on traite.
— Une variable exprime une association entre un nom et des valeurs : le nom de la variable

est fixé, sa valeur peut changer au cours de l’exécution du programme considéré. Une
variable peut ainsi être vue comme l’association d’un nom et d’une suite de valeurs.

— Le type d’une variable est celui des valeurs qu’elle peut prendre.
— L’état d’une variable à un instant donné est le couple <nom, valeur> à cet instant.
— Les valeurs sont décrites à l’aide du langage des expressions et des fonctions.

a.2. Constante

Une constante est l’association (constante) d’un nom et d’une seule valeur.

a.3. Lexique

Un lexique donne la signification d’un ensemble de noms définis pour réaliser un algorithme :
à chaque nom sont associés son type et son rôle dans l’analyse du problème considéré.
Un lexique comporte des noms de types, de constantes, de variables, d’actions et de fonctions.
Ces noms sont regroupés selon leurs rôles pour la solution.

a.4. Portée des noms d’un lexique

La portée d’un nom est le texte dans lequel ce nom est connu avec la signification indiquée
dans le lexique.

— Dans le cas d’un lexique global, la portée des noms est tout le texte du programme.
— Dans le cas d’un lexique local à une action (ou une fonction), la portée des noms est le

texte de l’action (ou de la fonction).

a.5. Affectation

La syntaxe de l’affectation est : variable ←− expression
X ←− 3 se lit “X prend pour valeur 3”
Le nom doit apparaître dans le lexique et le type de l’expression doit être celui de la variable.

a.6. Entrées/Sorties

La syntaxe de la lecture est : Lire(variable). La valeur lue doit être du type de la variable.
La syntaxe de l’écriture est : Ecrire(expression).

a.7. Composition séquentielle

Elle permet de décrire une action A en termes d’actions plus élémentaires A1, A2, . . .et d’ex-
primer que ces actions doivent être exécutées l’une après l’autre (en séquence) selon un ordre
indiqué.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.1

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

Schéma syntaxique :

A :
A1
A2
A3

ou bien A :
A1 ; A2 ; A3 ou encore

A :
A1 ; A2
A3

a.8. Composition conditionnelle

Elle permet de décrire une action A en termes d’actions élémentaires A1, A2, . . .et d’expri-
mer que l’exécution de A consiste en l’exécution d’une seule des actions A1, A2, . . .selon des
conditions indiquées. Les cas doivent couvrir le domaine et s’exclure mutuellement.
Schéma syntaxique :

A :
selon { liste des noms de variables dont dépend l’analyse par cas }

C1 : A1
C2 : A2
C3 : A3

Les Ai sont des actions décrites dans le langage des actions, et les Ci sont des conditions décrites
par des expressions à valeur booléenne. Les Ci décrivent une partition du domaine et s’excluent
mutuellement. L’ordre dans lequel les cas sont exprimés n’est pas pertinent.

a.9. Autres formes de compositions conditionnelles
Une autre forme possible du selon est la suivante :

A : selon
EB1 : A1
EB2 : A2
EB3 : A3
sinon : A4

dans laquelle sinon correspond au cas { non EB1 et non EB2 et non EB3 } pour respecter l’ex-
clusion des cas et la couverture du domaine.

La forme si C alors A1 sinon A2 permet d’exprimer un choix entre deux actions selon une condi-
tion C. Elle équivaut à :

selon
C : A1
non C : A2

La forme si C alors A en est un abrégé, propre à l’expression actionnelle, permettant d’exprimer
à quelle condition C, l’action A est exécutée.

a.10. Composition itérative

Elle permet de décrire une action A en termes d’une action élémentaire A1, et d’exprimer
que cette action doit être exécutée plusieurs fois au cours de l’exécution de A, tant qu’une
certaine condition sur l’état du système est vérifiée. Nous utilisons quatre formes de composition
itérative : tant que, répéter, répéter n fois, pour . . .allant de . . .à
Schéma syntaxique de la forme tant que :

A0 { initialisation de l’itération }
tant que CC { condition de continuation }

A1 { corps de l’itération }
A2 { sortie de l’itération }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.2

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

CC est une condition, exprimée sous forme d’une expression à valeur booléenne, qui porte sur
les variables du programme, c’est-à-dire les informations qui sont éventuellement modifiées (qui
varient) pendant son exécution. A2 représente un exemple de contexte d’utilisation du résultat
de cette itération. L’exécution d’une action itérative tant que engendre l’exécution répétitive
du corps de l’action A1 tant que la condition de continuation CC est vraie. Si cette condition
est fausse au départ, l’action se termine immédiatement.

A1

3 2

1

4

A2

A0

Figure 2.1 – Schéma d’exécution de la composition itérative tant que

Ce schéma met en évidence que les quatre points d’observation apparaissant dans le schéma
syntaxique correspondent à un même point à l’exécution.

a.11. Formes de composition répéter

Nous les définissons en termes de la forme tant que (CA est une condition d’arrêt).

A0
répéter

A1
jusqu’à CA
A2

est équivalent à

A0
A1
tant que non CA

A1
A2

répéter n fois
A est équivalent à

i ←− 1
tant que i ≤ n

A
i ←− i + 1

a.12. Parcours d’un intervalle d’entiers
On peut écrire une composition itérative avec la syntaxe suivante :

pour k allant de i à j [, pas p] : A

où i et j sont des expressions à valeurs entières, k est une variable de type entier sur [i. . .j] et
A une action qui peut faire référence aux valeurs de i, j et k, mais sans les modifier. k est local
à l’itération : il n’apparaît pas dans le lexique. p est un entier positif ou négatif. S’il n’est pas
mentionné, sa valeur par défaut est 1.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.3

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

Définition en termes de la forme tant que, pour p > 0 et j ≥ i :

pour k allant de i à j, pas p
A est équivalent à

k ←− i
tant que k ≤ j

A
k ←− k + p

Définition en termes de la forme tant que, pour p > 0 et j ≥ i :

pour k allant de j à i, pas -p
A est équivalent à

k ←− j
tant que k ≥ i

A
k ←− k - p

a.13. Fonctions et actions : spécification, statut des paramètres

Une action décrit la manière de modifier un état alors qu’une fonction calcule un résultat. Il en
découle une différence dans le mode de description.

Une fonction est définie en décrivant son profil (sa signature), c’est-à-dire la liste de ses para-
mètres et leur type, ainsi que le type du résultat calculé par la fonction.

Une action est définie en identifiant les informations qu’elle met en jeu (pertinentes pour l’ac-
tion), c’est-à-dire la liste de ses paramètres.

Nous classifions les paramètres selon l’abstraction qu’ils représentent et le traitement de l’in-
formation qu’ils expriment :

— Un paramètre donnée est une abstraction de la valeur de l’expression considérée. Un
paramètre donnée est uniquement consulté lors de l’exécution de l’action, jamais modifié.

— Un paramètre résultat est une abstraction du nom de l’expression considérée. Un para-
mètre résultat est uniquement modifié lors de l’exécution de l’action, jamais consulté.

— Un paramètre donnée-résultat est une abstraction du nom de la variable considérée. Un
paramètre donnée-résultat peut être à la fois modifié et consulté lors de l’exécution de
l’action.

Lors de l’utilisation, les paramètres effectifs précisent la valeur, le nom ou l’information qui
permettent d’instancier la fonction ou l’action : dans le cas d’un paramètre donnée, le paramètre
effectif est une expression ; dans le cas d’un paramètre résultat ou d’un paramètre donnée-
résultat, le paramètre effectif doit être un nom de variable.

Une fonction ne peut être utilisée que dans le contexte d’une expression.

a.14. Transformation d’une fonction en une action
Sur un exemple simple, nous illustrons une technique systématique qui consiste à introduire un
paramètre résultat. Soit les fonctions suivantes :

MaxDeux : fonction (a, b : entier) −→ entier { maximum de deux valeurs }
MaxDeux (a, b) :

retour : si a>b alors a sinon b

MaxTrois : fonction (a, b, c : entier) −→ entier { maximum de trois valeurs }
MaxTrois (a, b, c) :

retour : MaxDeux (MaxDeux (a, b), c)

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.4

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

{ Exemple de contexte d’utilisation }
U, V, W : entier
Lire (U, V, W)
Écrire (MaxTrois (U, V, W))

On peut transformer ces fonctions en actions de la manière suivante : à la fonction MaxTrois
correspond une action CréerMaxTrois ayant trois paramètres données et un paramètre résultat ;
de même à la fonction MaxDeux correspond une action CréerMaxDeux ayant deux paramètres
données et un paramètre résultat.

CréerMaxDeux : action (donnée a, b : entier ; résultat r : entier)
{ Construit dans r le maximum de a et b }
CréerMaxDeux (a, b, r) :

r ←− si a>b alors a sinon b

CréerMaxTrois : action (donnée a, b, c : entier ; résultat r : entier)
{ Construit dans r le maximum de a, b et c }
CréerMaxTrois (a, b, c, r) :

d : entier
CréerMaxDeux (a, b, d) ; CréerMaxDeux (d, c, r)

{ contexte d’utilisation }
U, V, W : entier ; X : entier
Lire (U, V, W) ; CréerMaxTrois (U, V, W, X) ; Écrire (X)

b) Raisonner sur les états

b.1. Assertions

En français, une assertion est "une proposition que l’on avance et qu’on soutient comme vraie"
(dictionnaire Petit Robert). Encore faut-il qu’elle soit corroborée, justifiée par les faits.

Dans le contexte de l’algorithmique et de la programmation :
— une assertion énonce une propriété de l’état d’une variable ou d’un ensemble de variables

à un instant de l’exécution d’un programme.
— les assertions sont utilisées pour annoter le texte des programmes : elles énoncent les

propriétés des variables lorsque l’exécution du programme passe au point du texte consi-
déré.

— les assertions servent en particulier à spécifier les actions par une pré-condition et une
post-condition : la pré-condition est une hypothèse sur l’état initial de l’action ; la post-
condition est une propriété garantie à l’issue de l’exécution de l’action dans la mesure
où la pré-condition est satisfaite.

— les assertions sont décrites en langue naturelle ou dans un formalisme adéquat (logique
par exemple) en termes de noms de variables.

b.2. Points d’observation

On présente dans cette partie les éléments de raisonnement sur les états des diverses compo-
sitions du langage, basés sur des points d’observation précis et l’utilisation d’assertions à ces
points d’observation.

Composition séquentielle
Raisonnement sur les états pour A : A1 ; A2, figure 2.2.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.5

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

Chaque rectangle est l’abstraction d’un schéma d’exécution. P est la précondition de A et P’ est
sa postcondition. De même, Pi et P’i sont les pré et post conditions de l’action Ai. La cohérence
de la composition s’exprime alors par P ⇒ P1 et P ′1⇒ P2 et P ′2⇒ P ′.

P1

P

A1
A

A2

P’1

P2

P’2

P’

Figure 2.2 – Composition séquentielle : raisonnement sur les états

Composition conditionnelle
Raisonnement sur les états pour

A : selon { liste des noms de variables dont dépend l’analyse par cas }
EB1 : A1
EB2 : A2
EB3 : A3

A1
P1 P2 P3

A2 A3

P’2P’1 P’3

P’

PA

EB1 et P EB2 et P EB3 et P

Figure 2.3 – Composition conditionnelle : raisonnement sur les états

Chaque rectangle est l’abstraction d’un schéma d’exécution. P est la précondition de A et P’ est
sa postcondition. De même, Pi et P’i sont les pré et post conditions de l’action Ai. La cohérence
de la composition s’exprime alors par ∀i · (EBi ∧ P ⇒ Pi) et (P ′i⇒ P ′).

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.6

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

Composition itérative
Pour raisonner sur les états d’une forme tant que, on a besoin des points d’observation suivants.
Dans la suite, on fera toujours référence aux points d’observation en commentaire sous la forme
{*P...*} :

A0 { initialisation de l’itération }
{ point d’observation n0 1 }
tant que CC { condition de continuation }

{ point d’observation n0 2 }
A1 { corps de l’itération }
{ point d’observation n0 3 }

{ point d’observation n0 4 }
A2

Le raisonnement est basé ensuite sur la notion d’invariant présentée dans le paragraphe 2.A.b.3..

Fonctions et actions
Pour raisonner sur des fonctions ou des actions, il faut qu’elles soient correctement spécifiées.

Une fonction est spécifiée en définissant la relation entre son domaine et son codomaine.

Une action est spécifiée en décrivant ses états initial et final en termes de ses paramètres et de
leurs relations. La description de l’état initial est interprétée comme une condition requise pour
pouvoir utiliser l’action, on parle de pré-condition. La description de l’état final est interprétée
comme une condition garantie à la fin de (l’exécution de) l’action dans la mesure où l’état initial
a été respecté lors de l’appel, on parle de post-condition.

La réalisation d’une action décrit le moyen de passer de l’état initial à l’état final en termes du
langage des actions.

Dans le cas d’une fonction, on décrit une valeur en termes du langage des expressions ou du
langage des actions.

b.3. Notion d’invariant

Définition : une assertion P placée au point d’observation no2 est un invariant de l’itération
si elle satisfait l’implication suivante : CC et P a la valeur vrai au point 2 ⇒ P a la valeur vrai
au point 3 (après l’exécution du corps de l’itération A1).

Soit P un invariant de l’itération. Si P est satisfaite au point no1 et si l’exécution se termine
alors on peut déduire qu’au point no4 l’assertion non CC et P est satisfaite.

Remarque :
Si A est un invariant et si B est un invariant, alors : "A et B" est un invariant ; "A ou B" est un
invariant. La démonstration est évidente d’après la définition et les propriétés de l’implication.

Par contre, si "A et B" est un invariant, on ne peut rien dire sur l’invariance de A, ni sur
l’invariance de B. De même, si "A ou B" est un invariant, on ne peut rien dire sur l’invariance
de A, ni sur l’invariance de B.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.7

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

B. Exemples d’exercices rédigés
Exemple E2.1 : Échange de deux valeurs
Réaliser un algorithme d’échange des valeurs de deux variables. Justifier sa correction à l’aide
d’assertions.

lexique
X, Y : entier

algorithme
Lire (X, Y) { On pose X=x0 et Y=y0 }
X ←− X + Y { X=x0 + y0 et Y=y0 }
Y ←− X - Y { X=x0 + y0 et Y=x0 }
X ←− X - Y { X=y0 et Y=x0 }
Écrire (X, Y)

Exemple E2.2 : Maximum de trois entiers
Réaliser un algorithme qui affiche le maximum de trois entiers donnés. On suppose que ces
entiers sont distincts deux à deux. Donner plusieurs solutions.

a, b, c : entier
action conditionnelle expression conditionnelle

solution 1
examen du domaine du résultat

Lire (a, b, c)
selon a, b, c

a>b et a>c : Écrire (a)
b>a et b>c : Écrire (b)
c>a et c>b : Écrire (c)

Lire (a, b, c)
Écrire (selon a, b, c

a>b et a>c : a
b>a et b>c : b
c>a et c>b : c)

solution 2
réduction du domaine des données et introduction d’un nom intermédiaire

m : entier
Lire (a, b, c)
si a > b alors m ←− a sinon m ←− b
si m > c alors Écrire (m) sinon Écrire (c)

Lire (a, b, c)
Écrire (

soit m = si a>b alors a sinon b
dans si m>c alors m sinon c)

Exemple E2.3 : Classement de trois entiers
Réaliser un algorithme qui étant donnés 3 entiers strictement positifs, affiche une liste ordonnée
sans redondance leur correspondant. Exemples : données : 3, 1, 6 résultats : 1, 3, 6 données :
5, 1, 1 résultats : 1, 5 données : 2, 2, 2 résultat : 2

On réduit le problème en isolant les cas d’égalité dans les données et on introduit deux actions
intermédiaires correspondant aux cas de deux et trois valeurs distinctes :

lexique
a, b, c : entier > 0
Saisir : action (résultat X : entier > 0)

{ Associe l’entier lu à X }

AfficherEnOrdre2 : action (donnée a, b : entier > 0)
{ Affichage en ordre croissant des valeurs des deux entiers donnés. Pré-condition : les deux entiers
sont différents }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.8

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

AfficherEnOrdre3 : action (donnée a, b, c : entier > 0)
{ Affichage des trois valeurs en ordre croissant. Pré-condition : les trois entiers sont distincts deux
à deux. }

algorithme
Saisir (a) ; Saisir (b) ; Saisir (c)
si a = b alors

si a = c alors Écrire (a) { a=b et a=c }
sinon AfficherEnOrdre2 (a, c) { a=b et a6=c }

sinon
si a = c alors AfficherEnOrdre2 (b, c) { a 6=b et a=c }
sinon

si b = c alors AfficherEnOrdre2 (a, b) { a 6=b et a 6=c et b=c }
sinon AfficherEnOrdre3 (a, b, c) { a 6=b et a 6=c et b 6=c }

Réalisation des actions intermédiaires
Pour l’action Saisir, Cf. exemple E2.4.

AfficherEnOrdre2 (a, b) :
si a < b alors Écrire (a, b) sinon Écrire (b, a)

Pour l’action AfficherEnOrdre3, on introduit une action intermédiaire Classer3V.

Classer3V : action (donnée-résultat X, Y, Z : entier > 0)
{ État initial : posons X=x0 et Y=y0 et Z=z0, distincts deux à deux ; État final : posons X=x1 et
Y=y1 et Z=z1 : <x1,y1,z1> est une permutation de <x0,y0,z0> et x1<y1<z1 }

AfficherEnOrdre3 (a, b, c) :
lexique

p, s, t : entier > 0
algorithme

p ←− a ; s ←− b ; t ←− c
Classer3V (p, s, t) ; Écrire (p, s, t)

Réalisation de l’action Classer3V
On place la plus petite valeur, puis on place les deux autres. On introduit une action intermé-
diaire d’échange :

Échanger : action (donnée-résultat X, Y : entier)
{ État initial : posons X = x0 et Y = y0 ; État final : X = y0 et Y = x0 }

et l’on obtient :

Classer3V (X, Y, Z) :
{ On pose X = x0 et Y = y0 et Z = z0 }

selon X, Y, Z
X<Y et X < Z : { rien } { X=x0 et Y=y0 et Z=z0 et x0<y0 et x0<z0 }
Y<X et Y < Z : Échanger (X, Y) { X=y0 et Y=x0 et Z=z0 et y0<x0 et y0<z0 }
Z<X et Z < Y : Échanger (X, Z) { X=z0 et Z=x0 et Y=y0 et z0<y0 et z0<x0 }

{ posons X=x’, Y=y’, Z=z’ : x’<y’ et x’<z’ et <x’,y’,z’> est une permutation de <x0,y0,z0> }
si Y > Z alors Échanger (Y, Z)

{ posons X=x1 et Y=y1 et Z=z1 : x1<y1<z1 et <x1,y1,z1> est une permutation de <x0,y0,z0> }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.9

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

Exemple E2.4 : Plus de 10 que de 15
Étant donnés deux entiers strictement positifs E1 et E2 et une séquence S d’entiers stricte-
ments positifs, réaliser un algorithme qui détermine si S comporte plus d’exemplaires de E1 que
d’exemplaires de E2. Les entiers de la séquence S sont saisis interactivement et traités à la
volée. Une valeur de marque (par exemple 0) indique la fin de la saisie. On fera apparaître un
invariant d’itération permettant de valider la solution.

On construit une itération : au fur et à mesure de la saisie, on maintient les valeurs des nombres
d’exemplaires de E1 et E2 déjà rencontrés. Dans les commentaires, pg désigne la partie gauche
de la séquence par rapport à l’élément en cours de traitement, c’est-à-dire la séquence des
éléments déjà traités. NbEx désigne une fonction qui, à deux entiers E1 et E2 et une séquence
d’entiers S, associe un couple formé des nombres d’exemplaires de E1 et E2 dans S.

lexique
marque : constante 0 de type entier
E1, E2 : entier ≥ 0 { données }
nb1, nb2 : entier ≥ 0 { pour élaborer le résultat }
EC : entier ≥ 0

{ entier courant : celui que l’on vient de saisir, éventuellement la marque }
Saisir : action (résultat : entier ≥ 0)

{ saisie d’un entier ≥0 et association de sa valeur au nom donné }
algorithme

Saisir(E1) ; Saisir(E2)
si E1 = E2 alors Écrire(“non”)
sinon { E1 6= E2 }

{ état initial : aucun entier n’a été traité : pg = [] }
nb1 ←− 0 ; nb2 ←− 0 { NbEx (E1,E2,[]) = <0, 0> }
Écrire ("donnez une suite de nombres >0 (", marque, " pour indiquer la fin)")
Saisir (EC) { obtention du premier élément }
tant que EC 6= marque { la marque n’est pas traitée }

{ Invariant : <nb1, nb2>= NbEx (E1,E2,pg) }
selon E1, E2, EC

EC 6= E1 et EC 6= E2 : { nb1 et nb2 ne doivent pas être modifiés }
EC = E1 : nb1 ←− nb1 + 1 { nb2 ne doit pas être modifié }
EC = E2 : nb2 ←− nb2 + 1 { nb1 ne doit pas être modifié }

{ <nb1, nb2>= NbEx (E1,E2,pg •EC) }
Saisir (EC) { obtention du prochain élément }

{ état final : tous les entiers ont été traités, sauf la marque ; pg est la séquence donnée. D’après
l’invariant, nb1 et nb2 sont les nombres d’exemplaires de E1 et E2 dans la séquence saisie. }
si nb1 > nb2 alors Écrire(“oui”) sinon Écrire(“non”)

Réalisation de l’action Saisir

Saisir (X) :
lexique

Z : entier
algorithme

Écrire (" ?") ; Lire (Z)
tant que Z < 0

Écrire ("nombre < 0, recommencez") ; Lire (Z)
X ←− Z

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.10

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

Exemple E2.5 : A propos d’invariant
Étant donnée une séquence SD de LD entiers, on étudie un algorithme dont l’effet est d’afficher
une séquence SR de LR entiers. Les entiers de SD sont traités au fur et à mesure de leur
acquisition de manière à produire successivement les entiers de SR :

lexique
LD : entier ≥ 0 { longueur de SD, donnée }
E : entier { entrée courante lors de la lecture de SD }
LR : entier ≥ 0 { longueur de SR, résultat }
S : entier { sortie courante lors de la production de SR }
i : entier ≥ 0 { pour contrôler la fin de la lecture de SD }

algorithme
(1) LR ←− 0 ; i ←− 0 ; S ←− 0

{*P1*}
(2) tant que i 6= LD

{*P2*}
(3) Lire(E)

{*P3*}
(4) si E > 0 alors

{*P4*}
(5) S ←− S + E
(6) LR ←− LR+1
(7) Écrire (S)
(8) i ←− i + 1

{*P5*}
{*P6*}

L’objet de l’exercice est de déterminer l’effet de cet algorithme. Pour cela, on étudie des
propriétés des variables de l’algorithme aux points d’observation {*P...*}.

Q1. Démontrer que l’exécution du programme se termine toujours si LD ≥ 0.

Si LD = 0, le corps de l’itération n’est pas exécuté. Si LD > 0, l’itération se termine : en
effet, i étant initialisé à 0 et i augmentant de 1 une fois à chaque itération (ligne 8), i atteint
nécessairement la valeur de LD.

Q2. Caractériser les valeurs de SD, pour lesquelles SR est vide.

Si SD est vide, LD=0 et l’itération est une action vide. A l’état final, LR=0 et SR est vide.
Sinon, l’instruction Écrire (ligne 7) n’est exécutée que si l’entrée courante E est strictement
positive. Par conséquent, SR = [] ⇐⇒ LD=0 ou ∀e ∈ SD, e ≤ 0.

Q3. Soit l’assertion A1 : i ≥ 0 et LR ≥ 0 et i éléments de SD ont déjà été lus et
parmi eux LR sont strictement positifs. Démontrer que A1 est un invariant de l’itération.

Hypothèse : en P2, A1 est vraie et i 6= LD.
Démonstration : i est incrémenté (ligne 8) et LR ne peut qu’augmenter (ligne 6). Donc i
≥ 0 et LR ≥ 0 reste vraie. Par ailleurs, la lecture d’un élément de SD (ligne 3) est suivie
d’une incrémentation de i (ligne 8) ; l’incrémentation de LR (ligne 6) a lieu si l’entrée E est
strictement positive.
Conclusion : A1 est vraie et i 6= LD en P2 =⇒ A1 est vraie en P5.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.11

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

Q4. Soit l’assertion A2 : tous les entiers de SD ont été lus et LR est le nombre d’en-
tiers strictement positifs de SD. Démontrer que A2 est vraie en P6.

A1 est vraie en P1 et A1 est un invariant de l’itération (Q3) : par conséquent A1 est vraie
et non(i 6= LD) en P6. Comme i = LD en P6, on peut conclure A2 est vraie en P6.

Q5. Soit l’assertion A3 : S ≥ 0 et S est la somme des éléments strictement positifs de
SD dèjà lus (0 s’il n’y en a aucun). Démontrer que A3 est un invariant de l’itération.

Hypothèse : en P2, A3 est vraie et i 6= LD.
Démonstration : on considère deux cas en P3 :

— E ≤ 0 : aucun élément strictement positif supplémentaire n’est lu et S ne change pas.
— E > 0 : E est un nouvel élément strictement positif et S est augmentée de la valeur de

E (ligne 5).
Conclusion : A3 est vraie et i 6= LD en P2 =⇒ A3 est vraie en P5 .

Q6. Décrire l’effet de l’algorithme en donnant la valeur de SR en fonction de SD. Jus-
tifier la réponse.

— L’exécution se termine (Q1)
— En P6, LR est le nombre d’entiers positifs de SD (Q4)
— LR vaut 0 au départ (ligne 1) et augmente de 1 pour chaque appel de l’instruction

Écrire (ligne 7). Ainsi en P6, LR est le nombre d’appels de Écrire, c’est-à-dire à dire
la longueur de SR.

— A3 est vraie en P1, A3 est un invariant (Q5) et S n’est pas modifiée ligne 8 : toute
valeur écrite est donc la somme des entiers strictement positifs des éléments déjà lus.

Conclusion : LR, longueur de SR, est le nombre d’entiers strictement positifs de SD et ∀ k
∈ [1. . .LR] le kème élément de SR est la somme des k premiers éléments strictement positifs
de SD.

C. Exercices
a) Observation des formes de composition

E2.6 : Composition conditionnelle
On considère deux actions nommées A1 et A2 réalisées de la manière suivante :

A1 : si EB alors A3 sinon A4
A2 : si EB alors A3 ; si (non EB) alors A4

A3 et A4 sont deux actions et EB est une expression à valeur booléenne : toutes les trois sont
décrites en termes de variables qui appartiennent au lexique du contexte dans lequel A1 ou A2
sont utilisées.
Donner deux exemples pour A3, A4 et EB :

— un pour lequel A1 et A2 sont équivalents
— un pour lequel A1 et A2 ne sont pas équivalents

E2.7 : Composition itérative
Exprimer la construction pour ... allant de ... à ..., pas ... (parcours d’un intervalle d’entiers) en
termes de la construction tant que.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.12

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

b) Observation d’algorithmes

E2.8 : A propos d’échanges
On spécifie une action d’échange des valeurs associées à deux variables :

Échanger : action (donnée-résultat X, Y : entier)
{ état initial :indifférent.On pose X = x0 et Y = y0 ; état final : X = y0 et Y = x0 }

Q1.
— L’appel Échanger(X+Y,Z) est incorrect. Expliquer pourquoi.
— Soit l’extrait d’algorithme suivant :

A, B : entier
A ←− 23 ; Lire(B)
Échanger(A, B)
{ A > 0 }

La post-condition (assertion finale) A > 0 n’est pas toujours vraie. Expliquer cette
situation, en observant en particulier la spécification de l’action Échanger ? Donner un
contre-exemple simple illustrant la réponse.

— On considère l’extrait d’algorithme suivant :
Échanger(A, B)
{ A > 0 }

Quelle est la plus faible pré-condition (assertion) que l’on doit placer avant l’action de
Échanger pour que la post-condition A > 0 soit toujours satisfaite ?

Q2. On considère l’action A réalisée de la manière suivante :
A(U, V, W) :

{ état initial : indifférent. On pose U = u0, V = v0 et W = w0 }
Échanger(U, V)

{ état intermédiaire : ••••• }
Échanger (V, W)

{ état final : ••••• }
En exploitant la spécification de l’action Échanger,

— Décrire l’état intermédiaire et l’état final,
— Donner la spécification de l’action : nom, paramètres avec leur statut (donnée, résultat,

donnée-résultat) et leur type, effet (par une phrase en français).

E2.9 : Classement de trois valeurs (E2.3 suite)
On étudie un principe de réalisation d’une action Classer3V spécifiée comme suit :

Classer3V : action (donnée-résultat A, B, C : entier)
{ e.i : indifférent. On pose A = a0, B = b0, C = c0
e.f : on pose A = a1, B = b1, C = c1 :
a1 ≤ b1 ≤ c1 et <a1, b1, c1> est une permutation de <a0, b0, c0> }

Pour réaliser cette action, on part d’un principe en deux étapes, exprimé par l’ébauche d’algo-
rithme suivante :

Classer3V(A, B, C) :
{ e.i. : indifférent. On pose A = a0, B = b0, C = c0 }

étape 1 : Classer A et B
{ état intermédiaire : On pose A = a’, B = b’, C=c’ ••••• }

étape 2 : Placer C par rapport à A et B
{ e.f : on pose A = a1, B =b1, C= c1 ;
a1 ≤ b1 ≤ c1 et <a1, b1, c1> est une permutation de <a0, b0, c0> }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.13

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

Q1. Pour préciser l’effet de la première étape, indépendamment de la manière avec laquelle
elle sera réalisée, on doit décrire l’état intermédiaire souhaité à l’issue de son exécution (post-
condition de la première étape).

— Pour cela, on propose l’assertion suivante :
{ état intermédiaire : On pose A = a’, B = b’ : a’ ≤ b’ }.
Cette assertion est insuffisante pour caractériser l’état intermédiaire nécessaire à une réa-
lisation correcte de l’action Classer3V. Expliquer pourquoi et donner un contre-exemple
sous forme d’une réalisation de l’étape 1 satisfaisant l’assertion mais conduisant à une
réalisation incorrecte de Classer3V. La réalisation proposée en contre-exemple doit être
la plus simple possible.

— Même question pour l’assertion :
{ état intermédiaire : }
{ On pose A = a’, B = b’ : a’ ≤ b’ et <a’, b’> est une permutation de <a0, b0> }

— Donner une assertion suffisante et réaliser l’action Classer3V en conséquence. On pourra
utiliser l’action Échanger de l’exercice E2.8.

Q2. Donner les nombres minimal et maximal d’appels de l’action Échanger que peut engendrer
l’algorithme obtenu. Donner les cas où il y a deux appels. De manière générale, donner pour
chacun des cas possibles, le nombre d’appels de l’action Échanger engendrés par l’algorithme.

E2.10 : Lecture d’un algorithme itératif
On considère l’algorithme suivant :

Bit : type entier sur [0,1]
B : bit ; n : entier
Lire (B) ; Lire (n) ; ALaLigne
pour i allant de 1 à n

répéter i fois : AfficherCaractère (si B = 1 alors ’1’ sinon ’0’)
ALaLigne ; B ←− 1-B

AfficherCaractère a pour effet d’afficher le caractère donné à la position courante du curseur
d’affichage. ALaLigne place le curseur d’affichage au début de la ligne suivant la ligne courante.

Q1. Expliquer brièvement l’effet de l’algorithme : l’exprimer par une phrase en français et/ou
par des exemples significatifs. De plus, préciser l’état des variables et de l’écran d’affichage à la
fin de l’exécution de l’algorithme.

Q2. Donner en fonction de la valeur lue pour n le nombre d’appels engendrés par l’algorithme,
de l’action ALaLigne, puis de l’action AfficherCaractère.

E2.11 : Algorithme mystère 1
On étudie l’algorithme donné ci-dessous. Des points d’observation {*1*}, {*2*}, ... y ont été
placés sous forme de commentaires.

Marque : constante 0 de type entier ; Secret, Résultat, EC : entier
Écrire("Taper un entier positif, ou ", Marque , " pour terminer : ") ; Lire(EC)
tant que EC < Marque

Écrire("Valeur incorrecte. Taper un entier positif, ou ", Marque, " pour terminer : ") ; Lire(EC)
Secret ←− 0
Résultat ←− 0

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.14

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

{*1*}
tant que EC 6= Marque

selon Secret, EC {*2*}
Secret > EC :
Secret = EC : Résultat ←− Résultat + 1 {*3*}
Secret < EC : Secret ←− EC ; Résultat ←− 1

Écrire("Taper un entier positif, ou ", Marque, " pour terminer : ") ; Lire(EC)
tant que EC < Marque

Écrire("Valeur incorrecte. Taper un entier positif, ou ", Marque, " pour terminer : "") ; Lire(EC)
{*4*}
si Résultat > 0 alors Écrire("La valeur du nombre Secret est ", Secret)
Écrire("La valeur du résultat est ", Résultat)

Q1. Trace d’une exécution
On suppose que la séquence de valeurs suivante est entrée au clavier :

-2, 3, 1, -1, 3, 6, 2, 6, 6, 4, 0, 6
Donner une trace de l’exécution correspondante de l’algorithme, sous forme d’un tableau com-
portant les valeurs prises successivement par les variables EC, Secret et Résultat, lors de chaque
passage à chacun des points d’observation placés dans l’algorithme.

Q2. Observation de l’algorithme
— En fonction de la taille des données et de leur nature, donner le nombre d’exécutions de

l’action conditionnelle suivant le point marqué {*2*} dans l’algorithme.
— Expliquer l’effet de l’algorithme pour des données quelconques, en particulier dans les

cas limites, et préciser le rôle de chaque variable.
— Donner un invariant de l’itération (point 2) permettant de déduire une assertion la plus

forte possible au point 4.

c) A propos d’invariants

E2.12 : Algorithme mystère 2
On considère l’algorithme suivant (les commentaires indiquent des points d’observation) :

n : entier > 0 { donnée }
i, j : entier > 0
S : entier > 0
Lire (n)
i ←− 1 ; j ←− 3 ; S ←− 1
{*1*}
tant que i 6= n

{*2*}
S ←− S + j ; i ←− i + 1 ; j ←− j + 2
{*3*}

{*4*}
Écrire (S)

On considère l’assertion P suivante caractérisant une propriété des variables S, i et j :

P(S,i, j) : j = 2*i + 1 et S = i2

Démontrer que cette assertion est un invariant de l’itération. Démontrer qu’elle est vraie
au point 1. En déduire une assertion la plus forte possible au point 4, en fonction de la donnée n.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.15

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

E2.13 : Algorithme mystère 3
On étudie l’algorithme suivant :

x, y : entier ≥ 0 { données }
u, v, a : entier ≥ 0 { intermédiaires. a est le résultat final }
Lire(x,y) ; a ←− 0 ; u ←− x ; v ←− y
tant que v 6= 0

si v reste 2 6= 0 alors a ←− a + u
u ←− 2*u ; v ←− v quotient 2

Q1. Démontrer que l’algorithme se termine. Déterminer le nombre d’exécutions du corps de
l’itération en fonction des données x et y. Vérifier pour quelques données et en exécutant
l’algorithme à la main que la valeur finale de la variable a est le produit de x et y.

Q2. Démontrer que u * v + a = x * y est un invariant de l’itération. En déduire une assertion
la plus forte possible à la fin de l’exécution.

d) Algorithmes à compléter

E2.14 : Les trois plus grandes valeurs
On considère une séquence d’entiers strictement positifs. On veut afficher les trois plus grandes
valeurs de cette séquence, en ordre décroissant. Quelques exemples précisant le résultat attendu :

— Résultat affiché : 25, 17, 9. Les trois valeurs sont distinctes : chacune des deux premières
(25 et 17) n’apparaît qu’une fois dans la séquence ; la troisième (9) y apparaît au moins
une fois.

— Résultat affiché : 19, 19, 16. Deux des trois valeurs sont égales (19) : la séquence donnée
contient exactement deux exemplaires de la plus grande (19) et au moins un exemplaire
de la troisième (16).

— Résultat affiché : 35, 35, 35. Les trois valeurs sont égales (35). Cette valeur apparaît au
moins trois fois dans la séquence donnée.

La séquence est saisie interactivement. Elle est terminée par l’entier 0 et on suppose qu’elle
contient au moins trois éléments (sans compter la marque).

L’algorithme est un parcours de la séquence donnée. On introduit trois variables P (premier),
D (deuxième) et T (troisième) qui contiennent les trois plus grandes valeurs déjà rencontrées,
en ordre décroissant.
Compléter l’ébauche suivante de cet algorithme, en respectant les commentaires :

marque : constante 0 de type entier
P, D, T : entier > 0 { pour décrire le résultat }
EC : entier ≥ 0 { élément courant lors du parcours }
{ Classer les deux premiers nombres. }
Lire(P) ; Lire(D)
{ Posons P = p0, D = d0 }
si D > P alors D ←→ P { A ←→ B dénote l’échange des valeurs des variables A et B }
{ Posons P = p1, D = d1 : p1 ≥ d1 et (p1,d1) permutation de (p0,d0) }
{ Placer par échange, le troisième nombre par rapport aux deux premiers. }
Lire(T)
{ Posons T = t0 }
si T > P alors ••••••••••
sinon si T > D alors ••••••••••

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.16

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

{ Posons P = p2, D = d2, T = t1 : p2 ≥ d2 ≥ t1 et (p2,d2,t1) permutation de (p0,d0,t0) }
Lire(EC)
tant que EC 6= marque

{ P ≥ D et D ≥ T : le triplet courant (P,D,T) est le résultat pour les nombres déjà traités. }
{ Situer l’élément courant par rapport aux valeurs du triplet courant et, le cas échéant, modifier
la valeur du triplet en conséquence. }

selon EC, P, D, T
••••••••••

Lire(EC)
Écrire(P, D, T)

E2.15 : Somme des chiffres d’un entier
Étant donné un entier E ≥ 0, on définit ici le poids de E comme étant l’entier somme des
entiers correspondant aux chiffres (caractères ’0’, ’1’, ’2’, ...,’9’) de la représentation décimale
de E. Par exemple, 19 est le poids de l’entier 12556 ; 7 est le poids de l’entier 10123. On spécifie
une fonction nommée Poids :

Poids : fonction (n : entier ≥ 0) −→ entier ≥ 0
{ Somme des chiffres de la représentation décimale de l’entier donné }

Étant donnée une suite non vide d’entiers strictement positifs, on désire déterminer si tous les
entiers de cette suite ont même poids.
La suite est saisie de manière interactive, la fin de la saisie étant déterminée par la donnée
d’une marque de valeur 0.

Q1. On propose la solution suivante :
marque : constante 0 de type entier
EC : entier ≥ 0 ; B : un booléen ; P : entier ≥ 0

Lire(EC) ; P ←− Poids(EC) ; B ←− vrai ; Lire(EC)
tant que EC 6= marque

B ←− Poids(EC) = P ; Lire(EC)
Écrire(si B alors "oui" sinon "non")

Cette solution est incorrecte. Quel est son effet ? Donner un invariant de l’itération permettant
de justifier la réponse.

Q2. Pour corriger la solution précédente, compléter l’ébauche suivante de l’algorithme y compris
l’invariant. Préciser le rôle de chaque variable. Donner le nombre d’exécutions du corps de
l’itération.

EC : entier ≥ 0 ; B : booléen ; P : entier ≥ 0
Lire(EC) ; P ←− Poids(EC) ; B ←− •••••• ; Lire(EC)
tant que EC 6= marque

{ Invariant : B a la valeur vrai ⇐⇒ •••••• }
B ←− •••••• ; Lire(EC)

Écrire(si B alors "oui" sinon "non")

Q3. Donner une autre solution, de manière à arrêter l’itération dès qu’il est possible de conclure.

Q4. Donner une réalisation itérative de la fonction Poids en utilisant les opérations quotient et
reste. Donner le nombre d’appels de ces fonctions engendrés par un appel initial de la fonction
Poids.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.17

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

D. Machine-tracés
Nous définissons une machine-tracés, c’est-à-dire un ensemble de primitives élémentaires de
tracés. Nous l’utilisons pour illustrer la notion d’action, le raisonnement sur les états et les
diverses formes de composition d’actions.

a) Spécification de la machine-tracés

a.1. description de l’état de la machine

L’état de la machine-tracés est caractérisé par l’état de deux composants : l’écran et la plume
de tracé. L’écran est un ensemble de points qui peuvent être éteints ou allumés. Une figure est
matérialisée par des points allumés. Les points sont désignés à l’aide de coordonnées définies
dans un système d’axes Ox, Oy dont l’origine, nommée centre (de l’écran) appartient au lexique
de la machine-tracés. Un état de l’écran, c’est-à-dire son état à un instant donné, est carac-
térisé par les figures qu’il comporte. L’état particulier dans lequel tous les points sont éteints
est nommé écran vide. Lorsque nous voulons indiquer qu’aucune contrainte particulière n’est
imposée à l’écran, nous disons qu’il est dans un état indifférent.
La machine-tracés manipule une plume dont l’état est défini par trois attributs :

— Une position d’écriture, en abrégé pe : elle peut être basse ou haute.
— Une position dans le plan, en abrégé pp : c’est un point du plan. Le cas échéant, nous le

décrivons par un couple de coordonnées.
— Un cap : c’est le sens de la plume, défini par un angle par rapport à l’axe Ox, orienté

dans le sens trigonométrique. Cet angle est donné en degrés.
Lorsque nous voulons indiquer qu’aucune propriété particulière n’est attachée à l’état de la
plume ou à l’un de ses attributs, nous disons qu’elle est dans un état indifférent ou que tel
attribut a une valeur indifférente.
Les primitives sont regroupées selon le type de modifications qu’elles apportent à l’état de
l’écran ou de la plume.

a.2. modification globale de l’écran et de la plume

— Vider vide l’écran et place la plume au centre, en position haute, cap Ouest-Est (0o).
— Effacer vide l’écran sans modifier l’état de la plume.

a.3. modification de la position d’écriture de la plume

— Lever met la plume en position “haute” (si elle n’y est pas déjà).
— Baisser met la plume en position “basse” (si elle n’y est pas déjà).

a.4. modification de la position de la plume dans le plan

— Avancer et Reculer, en abrégé Av et Re, font avancer ou reculer la plume d’une distance
donnée, selon le cap de la plume. La distance est donnée sous forme d’un nombre entier
ou réel, par exemple Av (50) ou Re (30.5). Notons que Av (-50) est équivalent à Re (50).
L’interprétation exacte de l’unité de mesure dépend des caractéristiques physiques de
l’environnement dans lequel la machine sera réalisée.

— Placer, en abrégé Plc, permet de mettre la plume en un point du plan donné. Par exemple,
si un point est caractérisé par ses coordonnées cartésiennes, Plc (-10, 35.3) place la plume
au point d’abscisse -10 et d’ordonnée 35.3.

— Les trois primitives Avancer, Reculer et Placer modifient la position de la plume, même
si la plume est haute. Elles provoquent un tracé rectiligne dès que la plume est basse :
elles modifient donc l’état de l’écran dans ce cas. Elles ne modifient jamais la position
d’écriture ni le cap de la plume.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.18

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

a.5. modification du cap de la plume

— TournerGauche et TournerDroite, en abrégé TrG et TrD, changent le cap selon une valeur
d’angle donnée en degrés. Par exemple, TrG (35) augmente modulo 360 le cap de la
plume de 35 degrés. TrD (45) le diminue modulo 360 de 45 degrés. TrG (35) a le même
effet que TrD (325).

— Orienter, en abrégé Ort, donne à la plume le cap donné en degrés. Par exemple, Ort (90)
donne à la plume le cap SudNord.

a.6. un exemple d’utilisation de la machine tracé

Exemple E2.16 : Tracé d’enveloppe
On veut réaliser un algorithme qui dessine une enveloppe comme dans la figure 2.4 : elle est
composée d’un carré, de ses deux diagonales et d’un triangle équilatéral placé au-dessus du carré.

t

t

c
O

Figure 2.4 – Enveloppe

On spécifie l’action de tracé suivante :

Tenveloppe : action (donnée t : réel > 0)
{ Trace une enveloppe comme dans la figure 2.4 : t est la taille des côtés du carré et du triangle. La
position et le cap initiaux de la plume correspondent au point O et au cap c de la figure. Quel que
soit l’état initial, à l’état final, l’écran ne comporte que la figure et la plume est haute dans le même
cap qu’au départ. }

Réaliser cette action de telle manière que le tracé de l’enveloppe soit effectué
sans lever la plume et sans passer deux fois sur le même trait.

Une réalisation possible est :

Tenveloppe (t) :
Vider ; Baisser
répéter 4 fois

Avt(t) ; TrG(90)
TrG(45) ; Av(

√
2*t)

TrG(75) ; Av(t)
TrG(120) ; Av(t)
TrG(75) ; Av(

√
2*t)

TrG(45) ; Lever

b) Exercices

On s’intéresse ici au tracé de figures géométriques simples et à la manière de les composer dans
des dessins plus élaborés. On s’intéresse notamment à la manière de caractériser une figure et
de paramétrer l’action de tracé.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.19

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

E2.17 : Tracé de carrés
On convient ici qu’un carré est défini par son sommet, sa taille et son cap : le sommet du carré
est l’un des sommets du carré ; la taille du carré est la taille des côtés du carré ; le cap du carré
est le cap du côté passant par le sommet du carré tel qu’un observateur placé au sommet du
carré et regardant dans le sens de ce côté, voit tous les côtés à sa gauche et devant lui (voir
figure 2.5).

s

c

t

Figure 2.5 – Le carré défini par un sommet s, une taille t et un cap c

Q1. On considère la spécification suivante du tracé d’un carré :
Tcarré : action (donnée t : réel >0)

{ État initial : pe=basse, cap = a0, pp=p0 ; état final : la plume a le même état
qu’au départ, et un carré de sommet p0, de côté t et de cap a0 a été tracé. Le reste
de l’écran n’est pas modifié. }

On considère maintenant une action de tracé nommée Tdessin :
Tdessin : action (donnée n : entier >0, t, dt : réel >0)

Tdessin (n, t, dt) :
Vider ; Baisser ;
pour i allant de 0 à n-1 : Tcarré (t+i*dt)

Quel est le dessin tracé par l’appel Tdessin (3, 2, 1) ? On raisonnera sur les états inter-
médiaires de la plume, par rapport à la spécification de l’action Tcarré.
Compléter en conséquence la spécification de l’action Tdessin, notamment en ce qui
concerne l’état initial et l’état final de la plume.

Q2. On propose la réalisation suivante de l’action Tcarré
Tcarré (t) :

Av (t) ; TrG (90) ; Av (t) ; TrG (90) ; Av (t) ; TrG (90) ; Av (t)

Critiquer cette réalisation par rapport à la spécification. Donner la spécification corres-
pondant à cette réalisation de Tcarré. Quel est l’effet, avec cette réalisation de Tcarré, de
l’appel Tdessin (3, 2, 1) ?

Q3. Donner une forme correcte de la réalisation de Tcarré par rapport à la spécification
donnée initialement.

E2.18 : Compositions de dessins formés d’un ensemble de carrés
Réaliser les actions de tracés suivantes en utilisant une action de tracé d’un carré Tcarré inspirée
de l’exercice E2.17 et toute action intermédiaire déduite d’une structuration du dessin à tracer.
Puis les utiliser dans diverses compositions à choisir.

a) Un ensemble de carrés disposés en ligne
On spécifie l’action suivante :

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.20

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

Tligne : action (donnée n : entier > 0, t : réel > 0)
{ Trace une ligne formée de n carrés de côté t comme dans la figure 2.6. A l’état initial, la plume est
haute en un point p, cap Ouest-Est ; à l’état final, la figure a été ajoutée sur l’écran et la plume est
dans le même état qu’au départ. Pré-condition : les valeurs de n et t et la position p sont telles que
le dessin peut être tracé dans la largeur de l’écran. }

t

p

t

Figure 2.6 – Exemple de 4 carrés (n=4)

— Utiliser l’action Tligne pour tracer, à partir du centre de l’écran, une ligne de 5 carrés,
avec deux appels de Tligne : l’un traçant les 2 premiers carrés, l’autres les 3 suivants. A
l’état final, la plume est haute au centre de l’écran.

— Réaliser l’action Tligne.
— Donner la distance parcourue par la plume pour un appel de Tligne.
— Donner le nombre d’appels des actions Baisser, Lever, Reculer, Avancer et TrG.

b) Un ensemble de carrés disposés en rectangle
Spécifier et réaliser une action nommée Trectangle, de tracé d’un ensemble de n*m carrés de
côté t disposés en rectangle comme dans la figure 2.7.

.

.

.

.

.

.

t

t

t

p

Figure 2.7 – Exemple de 3*4 carrés (n=3, m=4)

c) Un ensemble de carrés disposés en triangle
Spécifier et réaliser une action nommée Ttriangle, de tracé d’un ensemble de carrés disposés en
triangle comme dans la figure 2.8.

t

t

p

t t

Figure 2.8 – Exemple de carrés en triangle

E2.19 : Les rayons
On considère un dessin formé de n segments répartis régulièrement sur un cercle de rayon r et
de centre O, tel que celui illustré dans la figure 2.9 (n=8).

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.21

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

O

Figure 2.9 – Rayons

On spécifie une action de tracé de la manière suivante :

Trayons : action (donnée t : réel > 0, n : entier > 0)
{ Trace une figure comportant n rayons de taille t, issus du centre. État initial : plume basse au
centre, cap Ouest-Est ; état final : la figure a été ajoutée à l’écran ; la plume est dans le même état
qu’au départ. }

Réaliser l’action Trayons. Utiliser l’action ainsi définie dans une composition de votre choix.

E2.20 : Tracé de segments

Figure 2.10 – Suite de segments

La figure 2.10 illustre un effet d’optique. Elle est composée d’un ensemble de segments joi-
gnant des points espacés régulièrement sur les axes. Une telle figure est caractérisée par trois
paramètres :

— le nombre n de segments : à chaque segment correspond un point sur chacun des axes ;
— la taille th des intervalles séparant deux points de l’axe horizontal ;
— la taille tv des intervalles séparant deux points de l’axe vertical.

Pour tracer une telle figure, on spécifie une action nommée TsegmentsGlissants :

TsegmentsGlissants : action (donnée n : entier ≥ 0, th, tv : réel > 0)
{ Trace la figure formée des deux axes et de n segments glissants, th et tv étant la taille des intervalles
séparant deux points, respectivement sur l’axe horizontal et sur l’axe vertical. L’axe vertical est figuré par
un segment de taille (n+1)*tv. De même, l’axe horizontal est figuré par un segment de taille (n+1)*th.
L’action ne modifie pas le reste de l’écran. Il n’y a aucune contrainte sur les états initial et final de la
plume. }

Pour réaliser cette action, on spécifie une action de tracé d’un segment nommée Tsegment :

Point : type <abscisse : réel, ordonnée : réel> { abscisse et ordonnée du point }
Tsegment : action (donnée P1, P2 : deux Points)

{ Trace le segment défini par les deux points P1 et P2. État initial : indifférent, posons cap=c0 ;
état final : segment tracé, pe=haute, pp=P2, cap=c0. }

— Donner une réalisation de l’action Tsegment, en utilisant l’action Placer.
— Donner une réalisation de l’action TsegmentsGlissants, en utilisant l’action Tsegment.
— Donner le nombre d’appels de l’action Tsegment engendrés par un appel de l’action

TsegmentsGlissants.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.22

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

E2.21 : Tricot
On considère un triangle équilatéral pavé de triangles équilatéraux élémentaires (figure 2.11).

n=1 n=2

G

n=3 n=5

Figure 2.11 – Triangles équilatéraux

On convient qu’un triangle équilatéral est caractérisé par un sommet, une taille de côté et un
cap. On convient de plus que l’observateur placé au sommet et regardant dans le sens donné
par le cap voit le triangle devant lui et à sa gauche. Un "tricot" est caractérisé par le sommet et
le cap du triangle extérieur, la taille du côté des triangles élémentaires qui pavent la figure, et
le nombre de triangles élémentaires que l’on place le long d’un côté du triangle extérieur (ordre
de la figure).
On spécifie ainsi une action de tracé d’un tricot :

Ttricot : action (donnée n : entier > 0, te : réel > 0)
{ Trace la figure d’ordre n avec te pour taille de trait élémentaire.
État initial : plume basse au sommet du triangle extérieur orientée selon le cap du triangle extérieur
selon les conventions ci-dessus.
État final : tricot tracé et plume dans l’état initial. }

a) Observation d’une solution
On voit un "tricot" comme une suite de rangées horizontales, chaque rangée étant formée d’une
suite de triangles élémentaires, chaque triangle étant formé de trois segments. L’algorithme
est construit en raisonnant sur la suite des rangées formant le tricot. Le tracé d’une rangée est
composé du tracé de la base commune aux triangles de la rangée et de la ligne brisée complétant
les triangles. Le tracé de la ligne brisée est décomposé en une suite de tracés de couples de côtés
consécutifs.
On propose ainsi l’algorithme suivant :

Ttricot(N, TE) :
BC : réel { base de la rangée courante = N*TE }
BC ←− N*TE
pour NC allant de N à 1, pas -1

{ tracé de la base de la rangée courante. NC est le nombre de triangles de cette rangée. }
{*1*} Avancer(BC) ; {*2*} TrG(120)
{ tracé des triangles bordant la base }
{*3*} pour i allant de 1 à NC

{*4*} Avancer(TE) ; {*5*} TrG(120) ;
{*6*} Avancer(TE) ; {*7*} TrD(120)

{ préparation du tracé de la rangée suivante }
{*8*} TrD(60) ; Lever ; {*9*} Avancer(TE) ; {*10*} Baisser ; TrD(60)
{*11*} BC ←− BC - TE

{ mise en place de la plume dans le même état qu’au départ }
{*12*} TrD(120) ; Lever ; Avancer(N*TE) ; TrG(120) ; Baisser

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.23

UGA, UFR IM2AG, Algorithmique, langages et programmation Raisonner sur les actions

Dans les questions suivantes, on observe la relation entre l’algorithme ci-dessus et un tricot
d’ordre 5 (voir figure 2.11). Les trois côtés du triangle extérieur sont nommés base, côté gauche
et côté droit. Les rangées sont numérotées à partir de 1 en partant de la base.
Dans ce qui suit, on dit que la plume arrive en (respectivement quitte) un point P pour la
première (respectivement dernière) fois, lorsque c’est la première (respectivement dernière) fois
que la position de la plume dans le plan (pp) est ce point P (que la plume soit haute ou basse).

Q1. On considère le point G situé sur le côté gauche du triangle extérieur correspondant
à la base de la troisième rangée (cf figure 2.11).

— Déterminer le nombre de fois où la plume passe au point G.
— Situer le point du texte de l’algorithme correspondant au moment auquel, lors de son

exécution, la plume quitte ce point pour la dernière fois. Indiquer l’état de la plume à
ce moment là.

— Situer le point du texte de l’algorithme correspondant au moment auquel, lors de son
exécution, la plume arrive en ce point pour la première fois. Indiquer l’état de la plume
à ce moment là.

Q2. Montrer sur la figure tous les points auxquels se trouve la plume lorsque l’exécution
arrive au point marqué *10* dans le texte de l’algorithme.

Q3. Analyse quantitative :
Pour N donné, formuler le nombre d’appels de chacune des actions de la machine tracé :
Lever, Baisser, TournerGauche, TournerDroite, Avancer.

b) Tracé du tricot avec contrainte

Q4. Réaliser l’action Ttricot en respectant la contrainte suivante : la figure doit être tracée
sans lever la plume et sans passer deux fois sur le même segment. On pourra s’inspirer
du chemin illustré dans la figure 2.12.

Figure 2.12 – Triangles, tracé avec contrainte

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

2.24

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

3. Séquences et Tableaux

A. Eléments de cours
a) Tableaux

a.1. Terminologie

Le lexique général associé à la définition d’un tableau est :

bi, bs : constante de type entier { bornes inférieure et supérieure }
Nom_Tableau : tableau sur [bi. . .bs] de Type_Element

[bi. . .bs] est l’intervalle de définition du tableau : bi etbs sont des constantes fixées au moment
de coder le programme. Par convention, si l’intervalle est vide (bi>bs), le tableau est vide.
La taille du tableau est : bs-bi+1. Type_Element est le type des éléments du tableau.
Il faut distinguer le rang d’un élément dans le tableau et son indice : rang = indice-bi+1. Dans
le cas particulier où bi=1, le rang et l’indice sont alors de même valeur, et la taille est égale à
bs.

a.2. Opérations sur les tableaux

Il n’y a pas d’opération globale sur un tableau. Toute opération est réalisée en termes des
opérations sur les éléments du tableau. Les éléments d’un tableau T sont dénotés : Ti. Pour le
lexique suivant :

n : constante de type entier > 0
TA, TB : tableau sur [1. . .n] d’entier

mettre des zéros partout dans le tableau TA est réalisé par : pour i allant de 1 à n : TAi ←− 0
recopier les valeurs du tableau TA dans le tableau TB par : pour i allant de 1 à n : TBi ←− TAi

a.3. Tableaux en paramètres

Pour utiliser un tableau en paramètre d’une action ou d’une fonction, il est nécessaire de fournir
à l’action ou à la fonction 3 paramètres : un tableau sur un intervalle “non contraint” (les bornes
ne sont pas données) du type des éléments voulu, ainsi que les bornes effectives de ce tableau.
Par exemple, pour spécifier une action de calcul de somme de tous les éléments d’un tableau,
il faut paramétrer cette action par le tableau et ses bornes de la façon suivante :

AffSomTab : action (donnée a, b : entier, T : tableau sur [*. . .*] d’entier)
{ Affiche la somme des éléments du tableau T de borne inférieure a et de borne supérieure b. }

L’appel à l’action AffSomTab avec le lexique de 3.A.a.2., pour afficher la somme des éléments
du tableau TA, serait : AffSomTab(1, n, TA).

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.1

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

a.4. Tableaux à plusieurs dimensions

Une façon de considérer un tableau M à deux dimensions est de le voir comme un ensemble de
lignes, chaque ligne étant un tableau à une dimension.
On obtient alors le lexique général suivant :

n, m : constante de type entier > 0
M : tableau sur [1. . .n] de tableau sur [1. . .n] d’entier { Mi,j est le nom associé à l’élément situé à la

ligne i et à la colonne j }

Pour raisonner sur un tel tableau, on compose les schémas usuels de traitement séquentiel : on
raisonne sur une suite de lignes et, dans chaque ligne, sur une suite de cases.

b) Représentation contiguë d’une séquence dans un tableau

b.1. Principe de la représentation contiguë

Une séquence peut être représentée de façon contiguë dans un tableau : le tableau est le conte-
nant, de taille constante fixée a priori ; la séquence est le contenu, de taille variable.
La contiguïté est exprimée par le fait que deux éléments consécutifs de la séquence se trouvent
dans deux cases d’indices consécutifs (le premier élément est placé en première position du
tableau etc. . .).
Pour caractériser le dernier élément, deux méthodes existent : la représentation contiguë avec
longueur explicite (une variable contient la longueur de la séquence), et la représentation conti-
guë avec marque (une valeur spécifique “marque de fin” est placée après le dernier élément de
la séquence). Nous ne parlerons ici que de la représentation avec longueur explicite.

b.2. Schémas d’utilisation de la représentation avec longueur explicite

Les figures 3.1 et 3.2 résument le lexique et les schémas itératifs associés à la représentation
d’une séquence avec longueur explicite. Ces schémas sont applicables au traitement de tableaux,
en considérant que la longueur de la séquence est égale au nombre d’éléments du tableau.

Elément : type ; bi, bs : constante de type entier
TabElt : tableau sur [bi...bs] d’Elément
NbElt : entier sur [0..bs − bi +1] >
{ la séquence est représentée par TabElt le contenant et NbElt la longueur explicite }
P : fonction (E : Elément) −→ booléen { pour caractériser la propriété cherchée }

{ parcours }
InitT
pour IC allant de bi à bi+NbElt-1

Traiter (TabEltIC) { Traiter ne modifie ni IC, ni bi, ni NbElt }

Figure 3.1 – Schémas de traitement d’une séquence représentée dans un tableau avec longueur explicite – 1

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.2

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

{ recherche avec arrêt dès que possible }
IC : entier sur [bi. . .bs+1] { remarquer bs+1 }
IC ←− bi
tantque IC 6= bi + NbElt et puis non P (TabEltIC) : IC ←− IC + 1
si IC=bi+NbElt alors . . . { on n’a pas trouvé }
sinon . . . { TabEltIC est l’élément cherché }

{ parcours partiel }
IC : entier sur [bi. . .bs+1] { remarquer bs+1 }
IC ←− bi ; InitT
tantque IC 6= bi + NbElt et puis non P (TabEltIC)

Traiter (TabEltIC) ; IC ←− IC + 1
{ si IC=bi+NbElt, on a atteint la fin de la séquence }

Figure 3.2 – Schémas de traitement d’une séquence représentée dans un tableau avec longueur explicite – 2

b.3. Recherche avec sentinelle
L’idée est de placer, avant d’effectuer la recherche, un élément vérifiant la propriété cherchée
à la fin de la séquence. On est alors sûr de le trouver, ce qui permet d’exprimer le contrôle de
l’itération plus simplement :

IC : entier sur [bi. . .bs]
sentinelle : Elément { vérifiant P }
TabEltbi+NbElt ←− sentinelle ; IC ←− bi
tantque non P (TabEltIC)

IC ←− IC + 1
si IC = bi+NbElt... { on n’a pas trouvé }
sinon... { TabEltIC est l’élément cherché }

Remarque : Le fait de placer une sentinelle à la fin de la séquence réduit de 1 la longueur
maximale des séquences que l’on peut représenter.

b.4. Existence d’un élément vérifiant une propriété

Pour réaliser un algorithme déterminant l’existence d’un élément vérifiant une propriété P, on
peut appliquer le schéma de recherche mais aussi le schéma de parcours. Dans le cas d’une
représentation avec longueur explicite, on a alors le schéma suivant :

{ existence d’un élément vérifiant P }
Existe : booléen
Existe ←− faux
pour IC allant de bi à bi+NbElt-1

Existe ←− Existe ou P (TabEltIC)
{ Existe a la valeur vrai ⇐⇒ il existe un élément vérifiant P }

b.5. Propriété vérifiée par tous les éléments
Pour réaliser un algorithme déterminant si tous les éléments d’un tableau vérifient une propriété
P, on peut appliquer le schéma de recherche mais aussi le schéma de parcours. Dans le cas d’une
représentation avec longueur explicite, on a alors le schéma suivant :

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.3

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

{ tous les éléments vérifient-ils P ? }
TousOK : booléen
TousOK ←− vrai
pour IC allant de bi à bi+NbElt-1

TousOK ←− TousOK et P (TabEltIC)
{ TousOK a la valeur vrai ⇐⇒ tous les éléments vérifient P }

b.6. Insertion d’un élément dans une séquence triée en ordre croissant

Elément : type
bi, bs : constante de type entier
Lmax : constante bs-bi+1 de type entier{ longueur maximum des séquences que l’on peut représenter }
TabElt : tableau sur [bi. . .bs] d’Elément
NbElt : entier sur [0. . .Lmax]>

1. spécification de la position d’insertion k
On examine deux hypothèses selon la manière de placer un nouvel élément E en cas d’égalité.

Hypothèse 1 : en cas d’égalité, le nouvel élément est placé après ceux ayant même valeur.
Cas n◦ 1 : NbElt 6= 0 et E < TabEltbi : insertion en tête, k=bi
Cas n◦ 2 : nbElt=0 ou E ≥ TabEltbi+NbElt-1 : insertion en queue, k=bi+NbElt
Cas n◦ 3 : NbElt 6= 0 et TabEltbi ≤ E < TabEltbi+NbElt-1 :

k est l’indice vérifiant TabEltk-1 ≤ E < TabEltk
Hypothèse 2 : en cas d’égalité, le nouvel élément est placé avant ceux ayant même valeur.

Cas n◦ 1 : NbElt 6= 0 et E ≤ TabEltbi : insertion en tête, k=bi
Cas n◦ 2 : NbElt=0 ou E > TabEltbi+S.L-1 : insertion en queue, k=bi+NbElt
Cas n◦ 3 : NbElt 6= 0 et TabEltbi < E ≤ TabEltbi+NbElt-1 :

k est l’indice vérifiant TabEltk-1 < E ≤ TabEltk
2. construction de l’algorithme d’insertion
Une première solution consiste à décomposer le problème en trois étapes :

1. Calcul de la position d’insertion k, par une recherche dans la séquence, éventuellement
en sens inverse.

2. Préparation de l’insertion à la position k par un décalage.

3. Placement de l’élément à la position k.

Comme le décalage est un parcours en sens inverse de la séquence, on formule aussi la recherche
de la position d’insertion en sens inverse et on fusionne les deux itérations correspondantes.

{ Pré-condition S.L<Lmax }
k : entier sur [bi-1. . .bs]
k ←− bi + NbElt-1
tant que k 6= bi-1 et puis E < TabEltk

TabEltk+1 ←− TabEltk
k ←− k - 1

{ k+1 est la position d’insertion ; elle a été libérée }
TabEltk+1 ←− E
NbElt ←− NbElt + 1

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.4

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

b.7. Recherche dichotomique dans une séquence triée en ordre croissant
Nous fournissons ici un algorithme déterminant la position d’insertion d’un élément X donné
(avec l’hypothèse 1 ci-dessus en cas d’égalité).

{ Pré-condition NbElt 6=0 }
selon X, T

X < TabEltbi : k ←− bi
X ≥ TabEltbi+NbElt-1 : k ←− bi + NbElt
sinon { TabEltbi ≤X < TabEltbi+NbElt-1 et NbElt > 1 }

i ←− bi ; j ←− bi + NbElt - 1
tant que i < j-1

{ Invariant : TabElti ≤ X < TabEltj }
m ←− (i+j) quotient 2 { i<j-1 =⇒ i < m < j }
selon X, T :

X < TabEltm : j ←− m
X ≥ TabEltm : i ←− m

{ TabElti ≤ X < TabElti+1 }
k ←− i+1

B. Exemples d’exercices rédigés
Exemple E3.1 : À propos de somme d’entiers
On considère un tableau TE d’entiers définis sur l’intervalle [1. . .n] :

n : constante de type entier > 0 ; TE : tableau sur [1. . .n] d’entier

(i) Somme des éléments du tableau.
Réaliser un algorithme qui affiche la somme des éléments de TE.

On parcourt le tableau TE de manière à calculer progressivement la somme cherchée à l’aide
d’une variable Somme.

Somme : entier { pour calculer la somme }
Somme ←− 0
pour i allant de 1 à n

{ Somme est la somme des i-1 premiers éléments de TE (0 si i =1) }
Somme ←− Somme + TEi

Écrire(Somme)

(ii) Somme des X premiers éléments du tableau.
On spécifie une fonction nommée SommeDébut :

SommeDébut : fonction (T : tableau sur [*. . .*] d’entier, a, b : entier, R : entier > 0) −→ entier
{ Somme des R premiers éléments de T ; a et b sont respectivement les bornes inférieure et supérieure
du tableau T. Pré-condition : a≤b. Si T contient moins de R éléments, le résultat est la somme de tous
les éléments du tableau. }

— Compléter l’instruction suivante de manière à afficher la somme des 4 premiers éléments
du tableau TE :

Écrire(SommeDébut(•••••••••))
— Réaliser la fonction SommeDébut : pour cela modifier l’algorithme obtenu en (i).

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.5

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

Pour afficher la somme des 4 premiers éléments du tableau TE, on utilise la fonction Somme-
Début de la manière suivante :

Écrire(SommeDébut(TE, 1, n, 4))

Pour réaliser la fonction SommeDébut, on ne parcourt que lesX premiers éléments du tableau
donné.

SommeDébut(T, a, b, R) :
{ pré-condition : R entier strictement positif. Post-condition : Si R ≥ b-a+1, on fait la somme de T }

Somme : entier { pour calculer la somme }
nb : entier > 0 { nombre d’éléments à sommer, pour contrôler le parcours de T }
nb ←− si R < b-a+1 alors R sinon b-a+1
Somme ←− 0
pour i allant de a à a+nb-1

{ Somme est la somme des i-1 premiers éléments de T (0 si i = 1). }
Somme ←− Somme + Ti

retour : Somme

Exemple E3.2 : Appartenance
Décrire une fonction (spécification, réalisation itérative) d’appartenance d’un entier donné à
un tableau d’entiers donné :

Appartient : fonction (T : tableau sur [*. . .*] d’entier, a, b, X : entier) −→ booléen
{ vrai ⇐⇒ X ∈ T ; a et b sont respectivement les bornes inférieure et supérieure du tableau T. }

Pour déterminer l’existence d’un élément vérifiant une propriété P (ici “être égal à X”), on
peut appliquer soit un schéma de parcours soit un schéma de recherche.

(i) Version 1 : parcours de tout le tableau

{ X ∈ T ⇐⇒ X=Ta ou X=Ta+1 ou . . .X=Ti . . .ou X=Tb }
Appartient(T, a, b, X) :

Ap : booléen
Ap ←− faux
pour i allant de a à b

{ Ap a la valeur vrai ⇐⇒ X ∈ T[a...i−1] }
Ap ←− Ap ou X=Ti

retour : Ap

(ii) Version 2 : recherche avec arrêt dès que possible
Le parcours du tableau est interrompu dès que la valeur X est trouvée.

Appartient(T, a, b, X) :
i : entier sur [a. . .b+1]
i ←− a
tant que i 6= b+1 et puis X6=Ti

{ X /∈ T[a...i−1] }
i ←− i+1

retour : i 6= b+1

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.6

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

Exemple E3.3 : Intersection (séquence sous forme contiguë avec lon-
gueur explicite)
Réaliser un algorithme d’intersection de deux ensembles d’entiers. Les ensembles (données et
résultats) sont représentés par des séquences sans répétition sous forme contiguë avec longueur
explicite.

(i) Analyse du lexique
Deux variables sont associées à chaque ensemble : un tableau de taille fixe (définie a priori)
dans lequel les éléments de l’ensemble seront placés de manière contiguë à partir de la première
position ; un entier ≥ 0 associé au cardinal de l’ensemble.

Lmax : constante de type entier > 0 { longueur maximum des séquences considérées }
TabS1, TabS2, TabS3 : tableau sur [1. . .Lmax] d’entier
NbS1, NbS2, nbS3 : entier sur [0. . .Lmax]
{ S1, S2 sont les données, S3 le résultat }

(ii) Analyse de l’algorithme
On part de la définition de l’intersection :
x ∈ E1 ∩ E2 ⇐⇒ x ∈ E1 et x ∈ E2
On en déduit un principe d’algorithme : pour chaque élément x de E1 (parcours de TabS1
entre 1 et NbS1), si x appartient à E2 (recherche dans TabS2), placer x dans E3 (ajout dans
TabS3).
Pour réaliser la recherche, on s’appuie sur le principe développé dans l’exemple E3.2 : la
différence est que l’on n’explore le tableau TabS2 qu’entre les positions 1 et NbS2 (et non
Lmax).

(iii) Algorithme

NbS3 ←− 0 { E3 est vide au départ }
pour i allant de 1 à NbS1

{ TabS3[1...NbS3] contient les éléments de l’intersection de E2 et du sous-ensemble de E1 placé dans
TabS1[1...i−1] }
{ TabS1i appartient-t-il à E2 ? }
j ←− 1 ; tant que j 6=NbS2+1 et puis TabS1i 6= TabSj : j ←− j+1
si j 6= NbS2+1 alors { placer TabS1i en queue de TabS3 }

NbS3 ←− NbS3+1 ; TabS3NbS3 ←− TabS1i
{ E3 intersection de E1 et E2 est représenté par la séquence sous forme contiguë donnée dans TabS3
avec longueur explicite NbS3 }

.

Exemple E3.4 : Tri d’un tableau par sélection du minimum
Réaliser un algorithme de tri (en ordre croissant) d’un tableau d’entiers T, selon le principe
suivant : on identifie un élément de T ayant la valeur minimum ; on échange les places de cet
élément et du premier élément de T ; on répète ce processus avec le sous-tableau commençant en
deuxième position. Le processus se termine lorsque le sous-tableau ne comporte qu’un élément.
On donnera les invariants permettant de raisonner sur les itérations de l’algorithme.

Spécification :

TabE : type tableau sur [*. . .*] d’entier

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.7

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

TriParSelectionDuMinimum : action (donnée a, b : entier ; donnée-résultat T : TabE)
{ Trie le tableau T ; a et b sont ses bornes inférieure et supérieure.
e.i. : aucune hypothèse sur l’ordre des éléments de T ;
e.f. : T est trié. }

Réalisation : l’énoncé suggère deux itérations emboîtées qui relèvent d’un schéma de parcours.

TriParSelectionDuMinimum (a, b, T) :
lexique

im : entier sur [a. . .b] { indice d’un minimum courant }
x : entier { pour l’échange }

algorithme
pour i allant de a à b-1

{ T contient une permutation des valeurs initiales de T. Ta. . .i-1 est trié et contient les i-a valeurs
les plus petites du tableau }
{ identification de l’indice im d’un minimum de Ti. . .b }
im ←− i
pour j allant de i+1 à b

{ im est l’indice d’un minimum de Ti. . .j-1 }
si Tj < Tim alors im ←− j

{ échange }
x ←− Tim ; Tim ←− Ti ; Ti ←− x

Exemple E3.5 : Partition d’un ensemble de mots
On considère la partition P d’un ensemble E de mots, selon l’initiale (la première lettre) de
ces mots. P est un ensemble de classes non vides ; chaque classe de P est caractérisée par une
lettre de l’alphabet : c’est le sous-ensemble de E de tous les mots ayant cette lettre pour initiale.
Si une lettre n’est initiale d’aucun mot de E, il n’y a pas de classe associée à cette lettre dans
P.
Les ensembles sont représentés par des séquences sans répétitions. Une partition est une sé-
quence de classes, chaque classe étant une séquence de mots sans répétitions.
Les séquences sont sous forme contiguë dans des tableaux avec longueur explicite. Aucun
ordre n’est imposé sur ces séquences. On utilise le lexique suivant :

{ Les mots : on fait abstraction de leur représentation }
Lettre : type caractère { restreint aux lettres de l’alphabet }
Mot : type séquence non vide de Lettre

{ M étant de type Mot, premier(M) dénote le 1ercaractère de M. Pour affecter une valeur de type
Mot à une variable de type Mot, on utilise le symbole d’affectation usuel (←−). }

{ Les séquences de mots }
MaxM : constante de type entier > 0 { longueur maximum des séquences de mots }
TabMot : tableau sur [1. . .MaxM] de Mot
NbMot : entier sur [0. . .MaxM]

{ L’ensemble E est représenté par les mots placés dans le tableau TabMot entre les indices 1 et
NbMot. }

{ La partition }
Classe : type < M : tableau sur [1. . .MaxM] de Mot, NbM : entier sur [0. . .MaxM] >
TabClasse : tableau sur [1. . .26] de Classe
NbClasse : entier sur [0. . .26]

{ La partition P est représentée par un tableau de classes, une classe étant représentée par un
tableau de mots et le nombre de mots de la classe. Aucun ordre n’est imposé (entre les classes,
dans une classe). Les classes de P sont non vides. }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.8

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

1

i

NbClasse

26

TabClassei.NbM

TabClasse

TabClassei.M

MaxM

Figure 3.3 – Partition d’un ensemble de mots. TabClassei représente une classe
constituée de TabClassei.NbM mots implantés de manière contiguë dans
le tableau TabClassei.M et ayant tous la même initiale, de valeur
premier((TabClassei.M)1)

Q1. Construction de E à partir de P
Algorithme qui construit l’ensemble E associé à une partition P donnée :

— donnée : les variables TabClasse et NbClasse représentant la partition P.
— résultat : les variables TabMot et NbMot représentant l’ensemble E.

{ Chaque classe de P (parcours de TabClasse) est recopiée dans E (parcours d’une classe) en procédant
par ajout en queue de TabMot. }

{ pré-condition :
∑

i=1...NbClasse (TabClasse)i.NbM ≤ MaxM }
NbMot ←− 0
pour i allant de 1 à NbClasse

pour j allant de 1 à TabClassei.NbM
NbMot ←− NbMot + 1 ; TabMotNbMot ←− TabClassei.Mj

Q2. Construction de P à partir de E
Algorithme qui construit la partition P associée à un ensemble E donné :

— donnée : les variables TabMot et NbMot eentant l’ensemble laE.
— résultat : les variables TabClasse et NbClasse représentant la partition P.

{ Pour chaque mot de E (parcours), l’insérer dans P. Pour cela, soit I l’initiale du mot courant : s’il
existe dans P (recherche) une classe dont les mots commencent par I, ajouter le mot courant en queue
de cette classe ; sinon créer une nouvelle classe avec ce mot (ajout en queue dans P). }

MC : Mot { mot courant dans le parcours de E }
j : entier sur [1. . .27] { pour la recherche dans P }
NbClasse ←− 0
pour i allant de 1 à NbMot

MC ←− TabMoti
j ←− 1 ; tant que j 6= NbClasse + 1 et puis premier((TabClassej .M)1) 6= premier(MC) : j ←− j+1
si j 6= NbClasse + 1 alors { ajout en queue de la classe j }

TabClassej .NbM ←− TabClassej .NbM + 1 ; (TabClassej .M)TabClassej .NbM ←− MC
sinon { ajout en queue de P d’une classe singleton }

NbClasse ←− NbClasse + 1
TabClasseNbClasse.NbM ←− 1 ; (TabClasseNbClasse.NbM)1 ←− MC

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.9

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

C. Exercices
a) Traitement de tableaux

E3.6 : A propos de sommes d’entiers (E3.1 suite)
On veut afficher la somme des éléments d’indices pairs d’un tableau d’entiers T. S’il n’en existe
pas, 0 doit être affiché. On propose l’algorithme suivant :

n : constante de type entier > 0
T : tableau sur [1. . .n] d’entier
S : entier { somme courante }
ip : entier ≥ 0 { pour énumérer les indices pairs }
ip ←− 0 ; S ←− 0
{ *P1* }
tant que ip 6= n-1

{ *P2* }
ip ←− ip + 2 ; S ←− S + Tip

{ *P3* }
{ *P4* }
Ecrire(S)

L’objet de l’exercice est de valider cet algorithme, c’est-à-dire sa terminaison et sa correction
par rapport à l’effet attendu.
Lors de la rédaction des réponses, une attention particulière doit être apportée à la précision
et la pertinence des justifications et démonstrations.

Q1. Cas de non terminaison
— Donner un exemple simple de données (valeurs de n et de T) pour lesquelles l’exécution

de l’algorithme :
— se termine et donne le résultat correct.
— ne se termine pas.

— Caractériser les cas de terminaison et de non terminaison de manière générale. Justifier
la réponse.

Q2. Raisonnement sur les états
Il est conseillé de relire, au chapitre 2, la définition d’un invariant d’itération. Par ailleurs, on
prendra les conventions suivantes permettant d’abréger l’expression des assertions : 0 est pair ;
la somme d’une séquence vide vaut 0.

— Pour chacune des assertions suivantes indiquer si c’est un invariant de l’itération. Justifier
la réponse.
A1 : ip est pair A2 : ip est impair A3 : S ≥ 0

— Soit l’assertion A4 : S est la somme des éléments d’indices pairs de T[1. . .ip] :
— Démontrer que A4 n’est pas un invariant, en donnant un contre-exemple simple.
— En utilisant les arguments de cette démonstration, donner un invariant A5 obtenu

en complétant A4.
— Parmi les 5 assertions précédentes :

— lesquelles sont vraies en P1 ?
— lesquelles sont toujours vraies au passage de l’exécution en P2 ? Justifier la réponse.

— Dans l’hypothèse où l’itération se termine (voirQ1), déduire de ce qui précède une asser-
tion A6, vraie en P4 et montrer qu’elle correspond au résultat attendu de l’algorithme.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.10

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

Q3. Correction de l’algorithme
Modifier l’algorithme proposé pour qu’il soit correct, montrer sa terminaison et donner, en
fonction de n, le nombre d’exécutions du corps de l’itération.

E3.7 : Recherche dans un tableau
Expérimenter l’utilisation des schémas de parcours et de recherche avec arrêt dès que possible
(cf 3.A.b.2.) en étudiant chacune des deux fonctions suivantes :

n : constante de type entier > 0
QueDesPos : fonction (T : tableau sur [1. . .n] d’entier) −→ booléen

{ vrai si et seulement si le tableau T ne comporte que des entiers strictement positifs. }
EstEnOrdreCroissant : fonction (T : tableau sur [1. . .n] d’entier) −→ booléen

{ vrai si et seulement si le tableau T est trié en ordre croissant. }

— pour chaque fonction, donner des jeux d’essais significatifs permettant d’en tester les
réalisations

— pour chaque fonction, donner deux réalisations, l’une basée sur le schéma de parcours,
l’autre sur le schéma de recherche

— pour chaque réalisation, donner un algorithme utilisant la fonction.

E3.8 : A propos de valeur maximum
Pour chacune des questions suivantes : spécifier une action, en donner la réalisation ; puis donner
un exemple d’utilisation de l’action, en précisant le contexte d’appel (lexique).

Q1. Affichage de la valeur maximum des éléments d’un tableau d’entiers.

Q2. Affichage du plus petit indice de la valeur maximum des éléments d’un tableau d’entiers.

Q3.Modifier l’algorithme donné enQ2 pour afficher le plus grand indice de la valeur maximum.

E3.9 : Algorithme mystère
On propose l’algorithme suivant :

n : constante de type entier >0 ; T : tableau sur [1. . .n] d’entier
i ←− 1 ; j ←− n
tant que i < j

si Ti ≤ Tj alors i ←− i+1 sinon j ←− j-1
Écrire (Ti)

Cet algorithme a pour effet d’afficher la valeur d’un élément du tableau T. Lequel ? Justifier la
réponse à l’aide d’un invariant.

E3.10 : Matrices carrées symétriques
Une matrice carrée d’entiers d’ordre n est un tableau d’entiers de n lignes et de n colonnes.
Une matrice carrée d’ordre n est dite symétrique si et seulement si pour tout i et pour tout j,
l’élément situé à l’intersection de la ligne i et de la colonne j a même valeur que l’élément situé
à l’intersection de la ligne j et de la colonne i. Par exemple la matrice carrée d’ordre 5 donnée
figure 3.4 est symétrique.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.11

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

On donne une matrice carrée MatCar :

n : constante de type entier > 0
MatCar : tableau sur [1...n] de tableau sur [1...n] d’entier

On étudie un algorithme qui affiche un message indiquant si oui ou non la matrice MatCar est
symétrique.

1

2

1

0

4

12

12 6

6 8

8 -1

-1

0

0

7

7

4

4

87

87

42

42

11

11

Figure 3.4 – Matrice carrée d’ordre 5 symétrique

Q1. On propose l’ébauche d’algorithme suivante fondée sur un parcours de la matrice ligne par
ligne :

EstSym : booléen { vrai si la matrice est symétrique }

EstSym ←− •••
pour i allant de 1 à n

pour j allant de 1 à n
EstSym ←− •••

si EstSym alors écrire ("la matrice est symétrique")
sinon écrire ("la matrice n’est pas symétrique")

— Compléter cette ébauche de l’algorithme.
— Donner, en fonction de n, le nombre d’accès à la matrice MatCar.

Q2. On observe qu’il suffit de parcourir l’une des deux "demi-matrices"(en dessous ou en dessus
de la diagonale, diagonale exclue).

— Modifier l’algorithme de la question Q1 pour tenir compte de cette observation.
— Donner, en fonction de n, le nombre d’accès à la matrice MatCar.

Q3. On veut réaliser un nouvel algorithme, traitant l’une des deux "demi-matrices", fondé sur
le schéma de recherche avec "arrêt dès que possible".
Version 1
Donner une première version comportant deux itérations de recherche emboîtées :

— L’itération englobante exprime la recherche dans l’ensemble des lignes de la demi matrice,
d’une ligne vérifiant la propriété comporter un élément différent de son symétrique.

— L’itération interne exprime la recherche dans une ligne d’un élément différent de son
symétrique (elle peut être éventuellement réalisée par une fonction intermédiaire).

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.12

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

Version 2
Donner une deuxième version ne comportant qu’une seule itération de recherche. Elle est fondée
sur un principe de "linéarisation de la matrice" : on considère l’ensemble des couples d’indices
<i,j> donnant accès aux éléments de la demi-matrice. L’algorithme est une recherche avec ar-
rêt dès que possible dans cet ensemble, du premier couple <i, j> tel que MatCari,j 6= MatCarj,i.

E3.11 : Point de selle
Dans un tableau à deux dimensions (une matrice), un élément est un point de selle si sa valeur
est la valeur minimum de sa ligne et la valeur maximum de sa colonne. On spécifie la fonction
suivante :

L, C : constante de type entier > 0
UnPointSelle : (M : tableau sur [1. . .L] de tableau sur [1. . .C] d’entier)

−→ booléen, entier sur [1. . .L], entier sur [1. . .C]
{ Posons <b, i, j> = UnPointSelle(M) ; si M comporte au moins un point de selle, i et j sont les
numéros de ligne et de colonne d’un point de selle de M et b a la valeur vrai ; sinon les valeurs de i
et j ne sont pas significatives et b a la valeur faux. }

— Donner la réalisation de la fonction en supposant que les éléments de la matrice sont
distincts deux à deux, mais en s’imposant de ne pas utiliser de tableau supplémentaire.

b) Représentation contiguë d’une séquence dans un tableau

E3.12 : Représentation contiguë avec longueur explicite
Une séquence d’entiers S est donnée dans un tableau TabElt de taille n, sous forme contiguë
avec longueur explicite NbElt.

Q1. Étude du lexique
— Donner le lexique correspondant à cette représentation de la séquence S.
— Choisir les valeurs d’une séquence d’entiers de longueur 5 et dessiner le tableau TabElt

associé. Faire figurer NbElt.
— Soit l’expression TabEltNbElt+1. Que peut-on en dire (correction, valeur) ?

Q2. Existence d’un zéro
Pour déterminer s’il existe un élément de valeur 0 dans S, on propose l’algorithme suivant :

i : entier
i ←− 1
tant que TabElti 6= 0 et i 6= NbElt + 1

i ←− i+1
Écrire(si TabElti = 0 alors "oui" sinon "non")

Cet algorithme est incorrect.
— pour n=5 : donner un exemple de données pour lequel l’exécution de l’algorithme est

correcte.
— pour n=3, NbElt=3 : donner un exemple de données pour lequel l’exécution de l’algo-

rithme est incorrecte. Justifier la réponse.
— pour n=5, et NbElt=3 : donner un exemple de données pour lequel l’exécution de l’algo-

rithme est incorrecte. Justifier la réponse.
— En appliquant un schéma du cours, modifier l’algorithme donné pour que son exé-

cution soit correcte dans tous les cas.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.13

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

E3.13 : Suppression des espaces d’un texte
Étant donné un texte (séquence de caractères), on étudie divers algorithmes de suppression de
tous les espaces présents dans ce texte.
Exemple (les points figurent ici les espaces) :
texte donné : "•••ceci ••••••est •un ••exemple •de •texte •••"
texte résultat : "ceciestunexempledetexte"
Dans ce qui suit, les textes sont représentés sous forme contiguë avec longueur explicite. Les
tableaux sont définis sur l’intervalle [1. . .n], où n est une constante de type entier > 0.

n : constante de type entier > 0
espace : constante ’ ’ de type caractère
TabEnt : type tableau sur [1. . .n] de caractère
Ent : type entier sur [0. . .n]

Q1. Construction d’un nouveau texte
On spécifie l’action suivante :

CopierSansEspace : action (donnée T : TabEnt ; N : Ent, résultat T’ : TabEnt ; N’ : Ent)
{ Recopie dans T’ entre les indices 1 et N’, le texte donné dans T entre les indices 1 et N sans les
espaces. }

— Donner une réalisation de l’action CopierSansEspace.
— Analyse quantitative : donner le nombre de "recopies" de caractères qu’engendre votre

algorithme. De même donner le nombre de comparaisons de caractères. Formuler les
réponses en termes de N et du nombre E d’espaces du texte donné.

Q2. Modification du texte donné
On spécifie l’action suivante :

SupprimerEspaces : action (donnée-résultat T : TabEnt, N : Ent)
{ Supprime les espaces du texte donné dans T entre les indices 1 et N. À l’état final, T contient le
texte donné sans ses espaces entre les indices 1 et N. }

— Donner une réalisation de l’action SupprimerEspaces : l’algorithme doit construire le
résultat en réarrangeant les éléments du tableau T, sans utiliser de tableau supplémen-
taire.

Version 1
Appliquer le principe suivant : lors d’un parcours du texte donné, les espaces sont ignorés et
les autres caractères sont déplacés au début du tableau (remarquer l’analogie avec la solution
obtenue en Q1). La figure 3.5 schématise l’invariant devant être respecté par l’itération de
l’algorithme.

1 L’ i nN

T texte résultat déjà traité texte non traité

Figure 3.5 – Invariant de l’itération

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.14

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

Version 2
Les éléments du texte donné sont examinés successivement, les espaces rencontrés étant sup-
primés par décalage. On propose la réalisation suivante de l’action :

SupprimerEspaces(T, N) :
i : entier sur [1. . .n+1]
i ←− 1
tant que i 6= N+1

si Ti = espace alors
{ décalage à gauche pour supprimer l’espace }
pour j allant de i à N-1

Tj ←− Tj+1

N ←− N-1
i ←− i+1

Cet algorithme est incorrect :
— pour n=5, N=4, donner un exemple de données pour lequel l’exécution de l’algorithme

est incorrecte ; donner aussi un exemple pour lequel cette exécution est correcte.
— Modifier l’algorithme donné pour que son exécution soit correcte dans tous les cas.

E3.14 : Afficher en ordre sans trier
On étudie un algorithme affichant les éléments d’une séquence d’entiers, en ordre croissant et
sans la trier. Dans les premières questions, on se place dans l’hypothèse où les éléments de la
séquence traitée sont distincts deux à deux. Cette hypothèse est levée dans la dernière question.

Remarque : un objectif important de cet exercice est d’inciter à expérimenter toute idée
d’algorithme sur des exemples simples et ceci avant même de l’exprimer formellement.

Q1. Afficher en ordre sans tableau supplémentaire
(i) Principe et expérimentation préliminaire
Question : ayant déjà affiché un à un les i plus petits éléments de la séquence S donnée, quel
est le prochain élément à afficher ?
Réponse : le i+1ème plus petit, c’est-à-dire, eureka (!) le plus petit élément de S supérieur au
dernier élément affiché.
On adapte ainsi la structure de l’algorithme de tri par sélection (relire l’exemple E3.4) en
modifiant le corps de l’itération principale : au lieu de calculer le minimum des éléments non
traités de la séquence, on calcule le minimum des éléments de la séquence supérieurs au dernier
élément affiché.

— Expérimenter ce principe pour la séquence S = [70, 45, 80, 50, 30, 40, 72, 32] de la
manière suivante (sans écrire d’algorithme) :
— tracer à la main le calcul du minimum de S.
— tracer à la main le calcul du minimum des éléments de S qui sont strictement supé-

rieurs à 30.
— Expliquer brièvement la différence entre le calcul du minimum de S et le calcul du

minimum des éléments de S qui sont supérieurs à un entier X donné.
— tracer à la main, l’affichage en ordre croissant de S, en termes de ces opérations.

Spécifications
Dans ce qui suit, les séquences d’entiers sont représentées sous forme contiguë dans un tableau
avec longueur explicite. On utilise le lexique suivant :

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.15

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

Lmax : constante de type entier > 0
TabEnt : type tableau sur [1. . .Lmax] d’entier
Ent : type entier sur [0. . .Lmax]>
PlusInfini : constante de type entier { valeur maximum du type entier }
MoinsInfini : constante de type entier { valeur minimum du type entier }

IndicePlusPetitSup : fonction (T : TabEnt non vide, N :Ent, X : entier) −→ Ent
{ Posons im = IndicePlusPetitSup(T, N, X) :

— im 6= 0 : il existe au moins un élément de S strictement supérieur à X et im est l’indice du
minimum des éléments de T qui sont strictement supérieurs à X.

— im = 0 : aucun élément de T n’est strictement supérieur à X.
Pré-condition : les éléments de T sont distincts deux à deux }

AfficherEnOrdre : action (donnée T : TabEnt, N : Ent)
{ Affiche les éléments de S en ordre croissant.
Pré-condition : les éléments de T sont distincts deux à deux }

(ii) Etude de la fonction IndicePlusPetitSup
— En utilisant la fonction IndicePlusPetitSup, compléter l’instruction Ecrire (. . .), pour que

son effet soit d’afficher la valeur minimum d’une séquence d’entiers non vide S.
— Donner une réalisation de la fonction IndicePlusPetitSup.
— Donner des jeux d’essais significatifs pour tester cette réalisation.
— En particulier, donner le résultat de cette fonction, lorsque la séquence traitée contient

un élément de valeur PlusInfini. Conclure.

(iii) Etude de l’action AfficherEnOrdre
— Donner une réalisation de l’action AfficherEnOrdre, en utilisant la fonction

IndicePlusPetitSup et sans tableau supplémentaire. Commencer par donner l’invariant
de l’itération principale (on peut s’inspirer de l’invariant donné dans l’exemple E3.4).

— Donner des jeux d’essais significatifs pour tester cette réalisation.

(iv) Produire une séquence triée au lieu d’afficher
— Que faut-il changer à l’étude ci-dessus, si au lieu d’afficher S en ordre croissant sans la

trier, on veut produire une nouvelle séquence S’ comportant les éléments de S en ordre
croissant ?

Q2. Afficher en ordre par le biais d’une permutation ordonnant S.
Une alternative pour disposer des éléments d’une séquence S en ordre croissant, sans trier S,
est de construire une permutation P des entiers de l’intervalle [1. . .N] (c’est-à-dire des indices
de T) ordonnant les éléments de T : ∀ i, j ∈ [1. . .N], i > j ⇒ TP [i] ≥ TP [j]. Autrement dit, TP [i]

est la ième plus petite valeur de S.
On spécifie les actions suivantes :

AfficherEnOrdreSelonP : action (donnée T : TabEnt, N : Ent, P : TabEnt)
{ Affiche les éléments de T en ordre croissant sachant que P[1...N] est une permutation ordonnant T.
Pré-condition : les éléments de T sont distincts deux à deux. }

CréerPerm : action (donnée T : TabEnt, N :Ent ; résultat P : TabEnt)
{ Construit dans P[1...N] la permutation ordonnant la séquence T. Pré-condition : les éléments de T
sont distincts deux à deux. }

(i) Etude de l’action AfficherEnOrdreSelonP
— Donner la valeur de P, pour S = [40, 70, 80, 50, 30, 45, 72, 60].
— Donner une réalisation de l’action AfficherEnOrdreSelonP(T,8,P).

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.16

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

(ii) Etude de l’action CréerPerm
— Donner les modifications à apporter à l’algorithme obtenu en Q1iii pour obtenir la

réalisation de l’action CréerPerm.

Q3. Pour continuer
— Reprendre la question Q1 et proposer une nouvelle réalisation de l’action AfficherE-

nOrdre(S) en levant la pré-condition "les éléments de S sont distincts deux à deux".
On doit aussi reprendre l’étude de la fonction IndicePlusPetitSup.

E3.15 : Partition d’une séquence d’entiers
On considère une séquence non vide d’entiers S, et deux entiers X et Y tels que X≤Y. On veut
répartir S en deux séquences S1 et S2 : S1 est en ordre croissant et contient tous les éléments
de S appartenant à l’intervalle [X...Y] ; S2 contient tous les éléments de S n’appartenant pas à
l’intervalle [X...Y] ; aucun ordre n’est imposé sur S2.
La séquence S est représentée de manière contiguë dans un tableau avec longueur explicite.
On étudie une action nommée Répartir spécifiée de la manière suivante :

Lmax : constante de type entier > 0 { longueur maximum des séquences considérées }
Répartir : action

(donnée X, Y : entier ;
donnée-résultat T : tableau sur [1. . .Lmax] d’entier,

N : entier sur [1. . .Lmax] ;
résultat L1, L2 : entier sur [0. . .Lmax])

{ - à l’état initial, la séquence S de longueur N est implantée dans T entre les indices 1 et N ;
- à l’état final, les séquences S1 de longueur L1 et S2 de longueur L2 sont implantées dans T : S1
entre les indices 1 et L1 ; S2 entre les indices L1+1 et N. Pré-condition X ≤ Y. }

L’action Répartir doit être réalisée sans utiliser de tableau supplémentaire. Pour le faire,
on construit une itération qui examine successivement les valeurs de S de manière à réarranger
progressivement le tableau T.

••••••••• { Initialisations : aucun élément n’a encore été traité. S1 et S2 sont vides }
tant que ••••

si Ti ∈ S2 alors { ajout dans S2 : placer Ti dans la zone associée à S2 }
•••••••••

sinon { Ti ∈ S1, ajout dans S1 : placer Ti dans la zone associée à S1 }
•••••••••

••••••••• { calcul des valeurs de L1 et L2 }

bs1 bi21 Lmax

T

Ni

en ordre croissant

non traitésX≤Tk et Tk≤Y X>Tk ou Tk>Y

Figure 3.6 – Invariant de l’itération

La figure 3.6 schématise l’invariant proposé pour cette itération.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.17

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

Au moment du traitement de l’élément courant Ti , T[1...N] comporte trois zones délimitées par
deux indices nommés bs1 (borne supérieure de S1) et bi2 (borne inférieure de S2) de sorte
que :

— bs1 = i-1 et T[1...bs1] contient les éléments déjà traités appartenant à S1 ;
— T[bi2...N] contient les éléments déjà traités appartenant à S2 ;
— T[i...bi2−1] contient les éléments qui n’ont pas encore été traités.

Q1. Exploitation de l’invariant.
— par des dessins analogues à celui de la figure 3.6, illustrer l’état :

— à l’issue de l’exécution de l’action Répartir ;
— avant et après le traitement d’un élément courant (2 dessins selon le cas) ;
— au moment de traiter le dernier élément.

— On observe les variables bs1, i et bi2 :
— Donner leurs valeurs d’initialisation de manière cohérente avec l’invariant.
— Donner les valeurs minimales et maximales qu’elles peuvent prendre.
— Indiquer, selon la valeur de Ti, les variables dont la valeur doit être modifiée par le

corps de l’itération.
— Déduire de ce qui précède la condition d’arrêt de l’itération.

Q2. Réalisation de l’action.
— Réaliser l’action Répartir en ignorant la contrainte "S1 doit être triée".
— Modifier la solution obtenue pour tenir compte de cette contrainte (exploiter l’algorithme

d’insertion dans une séquence triée donné au paragraphe 3.A.b.2.).
— Si l’on supprime la pré-condition X ≤ Y, que faut-il modifier dans la spécification et la

réalisation de l’action Répartir ?

Q3. Autres principes de solution.
Donner d’autres principes de solution (sans écrire les algorithmes) : les formuler en français et
donner le dessin correspondant à l’invariant d’itération sur le modèle de la figure 3.6.

E3.16 : Suppression des éléments redondants
On dit qu’un élément d’une séquence est redondant s’il existe dans la séquence un autre élément
de même valeur.
On étudie la suppression des éléments redondants d’une séquence d’entiers S. Par
exemple, si à l’état initial S = [15 , 4 , 19 , 4 , 8 , 11 , 11 , 3 , 4 , 19] alors à l’état final,
S = [15 , 4 , 19 , 8 , 11 , 3]. Les séquences d’entiers sont représentées sous forme contiguë avec
longueur explicite.

Q1. Donner une réalisation de l’action SupRed spécifiée comme suit :

SupRed : action (donnée-résultat T : tableau sur [1. . .Lmax] d’entier, N : entier sur [0. . .Lmax])
{ Supprime les éléments redondants de T. On conserve le premier uniquement. }

Contrainte de réalisation : l’algorithme ne doit pas utiliser de tableau supplémentaire.

Q2. Donner une autre réalisation de l’action SupRed avec la précondition suivante : les
éléments de S sont en ordre croissant.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.18

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

E3.17 : Sous-séquences connexes
On dit qu’une séquence S1 est une sous-séquence connexe d’une séquence S2 si tous les éléments
de S1 apparaissent dans S2, dans le même ordre et dans des positions adjacentes.
Par exemple, la séquence "emp" est une sous-séquence connexe de la séquence "un exemple".
Par contre, la séquence "uex" n’est pas une sous-séquence connexe de la séquence "un exemple".
On considère des textes non vides, séquences de caractères représentées de manière contiguë
selon le type suivant :

Lmax : constante de type entier >0 { longueur maximum des séquences considérés }
TabCar : type tableau sur [1...Lmax] de caractère
Ent : entier sur [0...Lmax]
{ pour représenter une séquence S on utilise un tableau T de type TabCar }
{ entre les indices 1 et N de type Ent }

— Donner une réalisation de la fonction EstSSConnexe spécifiée comme suit :
EstSSConnexe : fonction (T1, T2 : TabCar non vide ; N1, N2 : Ent) −→ booléen

{ vrai ⇐⇒ S1 est sous-séquence connexe de S2 } .

E3.18 : Tri par insertion
Étant donné un tableau T d’entiers défini sur l’intervalle [1. . .n], n > 0, réaliser un algorithme de
tri en ordre croissant de T, selon le principe suivant : après les i-1 premières étapes de l’itération
réalisant le tri, le sous-tableau défini par les positions 1 et i-1 a été trié ; la ième étape consiste
à mettre l’élément de position i à sa place.
Estimer en fonction de n le nombre de comparaisons d’éléments du tableau qu’engendre cet
algorithme, dans les deux cas particuliers suivants : considérer le cas favorable où le tableau
est en ordre croissant au départ, et le cas défavorable où le tableau est en ordre décroissant au
départ.

c) Représentation d’un ensemble par un vecteur de booléens

E3.19 : Opérations ensemblistes
On considère un ensemble P de n personnes numérotées de 1 à n. Le numéro d’une personne
sert à l’identifier.
Tout sous-ensemble E de P peut être représenté par un tableau de booléens défini sur [1. . .n]
avec la convention suivante : si la personne de numéro i appartient au sous-ensemble, l’élément
du tableau situé à l’indice i a la valeur vrai ; et si l’élément du tableau situé à l’indice i a la
valeur faux.
On définit le type suivant :

n : constante de type entier > 0
SousEnsembleP : type tableau sur [1. . .n] de booléen

{ E étant de type SousEnsembleP, la personne i appartient à E ⇐⇒ Ei a la valeur vrai. }

En utilisant lexique ci-dessus, étudier chacune des primitives suivantes : pour chacune d’elle,
donner un principe d’algorithme (en termes de schéma du cours), donner la réalisation corres-
pondante et les jeux d’essais associés.

Cardinal : fonction (A : SousEnsembleP) −→ entier sur [0. . .n]
{ Nombre d’éléments de l’ensemble A }

EstVide : fonction (A : SousEnsembleP) −→ booléen
{ vrai si et seulement si A est l’ensemble vide }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.19

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

CréerIntersection : action (donnée A, B : SousEnsembleP, résultat C : SousEnsembleP)
{ à l’état final, C est l’intersection des ensembles A et B. }

CréerUnion : action (donnée A, B : SousEnsembleP, résultat C : SousEnsembleP)
{ à l’état final, U est l’union des ensembles A et B. }

CréerDifférence : action (donnée A, B : SousEnsembleP, résultat C : SousEnsembleP)
{ à l’état final, DA est la différence des ensembles A et B. }

E3.20 : A propos d’ensembles de sous-ensembles
On considère un ensemble P de n personnes numérotées de 1 à n, adhérentes d’un club de loisirs.
Ce club propose à ses adhérents un ensemble A de k activités, numérotées de 1 à k pour les
identifier. Une personne peut être inscrite à une ou plusieurs activités.
On s’intéresse ici aussi bien :

— aux activités auxquelles est inscrite une personne : c’est un sous-ensemble de A,
— qu’aux personnes inscrites à une activité donnée : c’est un sous-ensemble de P.

Dans ce qui suit, on considère un tableau de booléens à deux dimensions, nommé Z et formé
de k lignes et de n colonnes :

Z : tableau sur [1. . .k] de tableau sur [1. . .n] de booléen
{ Za,p a la valeur vrai si et seulement si la personne de numéro p est inscrite à l’activité de numéro a. }

Le tableau Z peut être interprété de la manière suivante :
— Chaque ligne est un vecteur de n booléens représentant le sous-ensemble de personnes

inscrites à l’activité identifiée par le numéro de cette ligne (comme dans l’exerciceE3.19).
— De même, chaque colonne est un vecteur de k booléens représentant le sous-ensemble

d’activités auxquelles participe la personne identifiée par le numéro de cette colonne.
Le tableau Z a été initialisé et contient l’information concernant les inscriptions des n adhérents
aux k activités.

Réaliser des algorithmes correspondants à chacune des questions suivantes, en précisant éven-
tuellement la spécification :

— Affichage des activités auxquelles est inscrite la personne de numéro p.
— Les personnes de numéros p1 et p2 sont-elles inscrites aux mêmes activités (exactement) ?
— Construction du sous-ensemble des activités communes aux deux personnes de numéros

p1 et p2.
— Construction du sous-ensemble des personnes inscrites à toutes les activités du club.

E3.21 : Les permutations des N premiers entiers
Nous parlons d’une permutation P d’ordre N (N>0) pour désigner une séquence de N entiers
distincts pris dans l’intervalle [1. . .N] : tout élément de [1. . .N] se trouve une fois et une seule
dans P. Par exemple, la séquence [5, 9, 1, 8, 2, 6, 4, 7, 3] est une permutation d’ordre 9.
On veut déterminer si une séquence de N entiers est une permutation d’ordre N. On définit
pour cela le lexique suivant :

MaxE : constante de type entier > 0 { longueur maximum des séquences d’entiers }
{ soit S une séquence représentée dans le tableau TabE entre les indices 1 et NbE. }
EstPerm : fonction (TabE : tableau sur [1. . .MaxE] d’entier sur [1. . .MaxE] ;

NbE : entier sur [0. . .MaxE]) −→ booléen
{ vrai si et seulement si S est une permutation d’ordre NbE }

— Donner une réalisation de la fonction EstPerm selon chacun des principes suivants :

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.20

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

— Le résultat a la valeur vrai si et seulement si tout élément de l’intervalle [1. . .NbE]
appartient à TabE : pour chaque entier de cet intervalle, vérifier qu’il appartient à
TabE (combinaison de deux schémas d’existence).

— Le résultat a la valeur vrai si et seulement si tout élément de TabE appartient à
l’intervalle [1. . .NbE] et si les éléments de TabE sont distincts deux à deux : pour
chaque élément de TabE vérifier qu’il appartient à l’intervalle et qu’aucun élément le
précédant dans TabE n’a la même valeur.

D. Problèmes dirigés
E3.22 : A propos de permutations
La notion de permutation est définie exercice E3.21.
Une permutation P d’ordre N peut être utilisée pour définir un ordre entre les éléments d’une
séquence S de N éléments : l’élément de rang Pi dans S est le ième plus petit élément de S selon
cet ordre. Par exemple pour S = ["jean","alain","marcelle","aline","zoé","hubert"] :

— P1 = [2,4,6,1,3,5] classe les éléments de S selon l’ordre alphabétique.
— P2 = [5,1,2,4,6,3] classe les éléments de S selon les longueurs des noms.
— P3 = [6,5,4,3,2,1] classe les éléments de S dans l’ordre inverse de celui défini par S.
— P4 = [1,2,3,4,5,6] classe les éléments de S dans l’ordre défini par S.

Nous étudions la construction de permutations associées à une séquence de personnes.

a) Permutation classant les personnes selon une relation d’ordre

Q1. Etude préliminaire à la programmation
On considère une séquence S de N personnes dont on connaît le nom et l’année de naissance,
par exemple :
N = 10
S = [<"jean", 1974>, <"alain", 1972>, <"marie", 1976>, <"hubert", 1970>, <"zoé", 1960>,
<"aline", 1970>, <"anne", 1973>, <"thomas", 1977>, <"fernand", 1971>, <"marcelle",
1965>, . . .]
Soit PNom et PNais, les permutations d’ordre N qui classent les personnes respectivement dans
l’ordre alphabétique des noms et dans l’ordre chronologique des années de naissance (deux
personnes nées la même année sont classées dans l’ordre alphabétique des noms).
Pour l’exemple ci dessus :
PNom = [2, 6, 7, 9, 4, 1, 10, 3, 8, 5, . . .], PNais = [5, 10, 6, 4, 9, 2, 7, 1, 3, 8, . . .]
On fixe le lexique suivant :

{ le type Personne }
{ les noms }
Nom : type texte { restreint aux lettres de l’alphabet }

{ Pour comparer des lettres ou des noms selon l’ordre alphabétique, on utilise les symboles habituels
sur les nombres. Pour afficher un nom, on utiliser l’instruction Écrire. }

{ les dates (précision : année) }
DateMin : constante 1900 de type entier ; DateMax : constante 2012 de type entier
Date : type entier sur [DateMin. . .DateMax]

{ les personnes }
Personne : type <Nm : Nom, Dnais : Date>

{ nom et année de naissance de la personne. }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.21

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

{ relations d’ordre sur les personnes }
InfNom : fonction (P1, P2 : Personne) −→ booléen

{ vrai ⇐⇒ P1 précède strictement P2 selon l’ordre alphabétique }
InfNais : fonction (P1, P2 : Personne) −→ booléen

{ vrai ⇐⇒ P1 précède strictement P2 selon les dates de naissances }

{ les séquences de personnes et les permutations : représentation contiguë avec longueur explicite }
MaxP : constante de type entier > 0 { longueur maximum des séquences de personnes }
TabP : tableau sur [1. . .MaxP] de Personne
NbP : entier sur [0. . .MaxP]>

{ une séquence de personnes est représentée dans le tableau TabP entre les indices 1 et NbP. }
TabNom : tableau sur [1. . .MaxP] d’entier sur [1. . .MaxP]
TabNais : tableau sur [1. . .MaxP] d’entier sur [1. . .MaxP]
{ TabNom et TabNais sont les permutations d’ordre N classant S respectivement selon les noms (ordre
alphabétique) et les dates de naissances (ordre chronologique). }

(i) Relations d’ordre sur les personnes
Réaliser les fonctions InfNom et InfNais.

(ii) Construction des permutations : adaptation d’un algorithme de tri
On étudie un algorithme de construction de la permutation TabNom classant une séquence
de personnes S selon l’ordre alphabétique des noms. Pour obtenir la permutation, on modifie
l’algorithme de tri par sélection du minimum donné en E3.4 : au lieu d’échanger des éléments
de TabP, on échange les éléments de TabNom ; le tableau TabP n’est pas modifié par
l’algorithme. On obtient l’ébauche suivante :

{ état initial de TabNom indifférent. L’ordre considéré est l’ordre alphabétique sur les noms (<) }
••••••••••••••••••••• { initialisation de TabNom }
{ ∀k ∈ [1 . . . N], TabNomk = k }
pour i allant de 1 à N-1

{ (TabNom)[1...N] est une permutation d’ordre N. Pour i > 1, (TabNom)[1...i−1] contient les indices
dans TabP des i-1 plus petites valeurs de TabP et la suite (TabP)TabNom1 , . . ., (TabP)TabNomi−1

est triée. }
••••••••••••••••••••• { recherche de l’indice dans TabP de la ième plus petite valeur de

TabP }
••••••••••••••••••••• { échange de deux valeurs de TabNom }

{ état final : TabNom est la permutation ordonnant S selon l’ordre alphabétique des noms }

— Compléter l’ébauche ci-dessus pour construire la permutation TabNom (en utilisant
InfNom).

— Que faut-il modifier pour construire la permutation TabNais au lieu de TabNom ?

(iii) Utilisation des permutations
— Pour S et PNom données, réaliser un algorithme d’affichage du “plus petit nom”, (se-

lon l’ordre alphabétique), commençant par une lettre supérieure ou égale (selon l’ordre
alphabétique) à une lettre donnée. Un message particulier sera affiché si un tel nom
n’existe pas.

— Pour S et PNais donnéees, réaliser un algorithme qui affiche les noms des personnes dans
l’ordre chronologique des années de naissance.

b) Pour continuer : répartition d’un ensemble de personnes en classes d’âges

On étudie un algorithme qui répartit les personnes d’une séquence S en une séquence C de
classes d’âges définies par une séquence D de K dates en ordre croissant :

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.22

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

— une classe d’âge est représentée par une séquence d’entiers identifiant les personnes de
la classe par leur rang dans S ; une classe d’âge peut être vide.

— la première classe d’âge contient toutes les personnes dont l’année de naissance est stric-
tement inférieure à la première date de D (D1).

— la K+1ème classe contient toutes les personnes dont l’année de naissance est supérieure
ou égale à la dernière date de D (DK).

— pour i appartenant à [2. . .K], la ième classe contient toutes les personnes dont l’année
de naissance est supérieure ou égale à la i-1ème date (Di−1) et strictement inférieure à
la ième date (Di).

Exemple :
S = [<"jean", 1974>, <"alain", 1972>, <"marie", 1976>, <"hubert", 1970>, <"zoé", 1960>,
<"aline", 1970>, <"anne", 1973>, <"thomas", 1977>, <"fernand", 1971>, <"marcelle",
1965>]
D = [1963, 1973, 1975, 1976], K = 4, C = [[5], [2, 4, 6, 9, 10], [1, 7], [], [3, 8]]

Q2. Etude préliminaire à la programmation
Pour représenter la partition en classes d’âge, on utilise le lexique suivant :

{ Séquence de dates en ordre croissant sous forme contiguë }
MaxD : constante de type entier > 0 { nombre maximum de dates }
TabD : tableau sur [1. . .MaxD] de Date
NbD : entier sur [0. . .MaxD]

{ Soit une séquence de NbD dates ; ses éléments sont placés dans le tableau TabD entre les indices
1 et NbD. }

{ Séquences de classes : représentation contiguë avec longueur explicite ; chaque classe est une séquence
d’entiers. }

Classe : type < T : tableau sur [1. . .MaxP] d’entier sur [1 . . .MaxP], N : entier sur [0. . .MaxP]>
TabC : tableau sur [1. . .MaxD+1] de Classe
NbC : entier sur [0. . .MaxD+1]

(i) Construction des classes d’âges
Réaliser un algorithme qui construit TabC à partir des données S et D. Appliquer le principe
suivant : pour chaque élément de la séquence S (parcours), déterminer à quelle classe il ap-
partient (recherche dans TabD) et placer son numéro dans cette classe (ajout en queue de la
classe).

(ii) Affichage des noms par classes d’âges
En utilisant directement la permutation PNais de la question Q1, réaliser un algorithme qui
affiche les noms des personnes par classe d’âge. Pour chaque classe d’âge, on doit préciser ce
qui la caractérise (“avant . . .”, “entre . . .et . . .”, “après . . .”), la liste des noms correspondante
(en ordre chronologique) ou, le cas échéant, la mention “aucune personne dans cette classe”.

E3.23 : Gestion d’une bibliothèque
1. Contexte

Une association, constituée d’un ensemble d’adhérents, gère une bibliothèque de prêts : elle
possède un certain nombre d’exemplaires (au moins un) de chaque livre de son catalogue. Un
adhérent ne peut emprunter un livre que si les règles suivantes sont toutes respectées :

— La personne doit être adhérente de l’association.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.23

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

— Le livre doit apparaître dans le catalogue et au moins un exemplaire doit être disponible
en bibliothèque. Un livre est disponible s’il est dans le catalogue et si au moins un de
ses exemplaires n’est pas en cours de prêt.

— Une personne ne peut emprunter qu’un seul exemplaire d’un même titre.
— Le nombre de livres empruntés par une personne à un instant donné ne peut pas dépasser

une limite fixée qui est la même pour tous les adhérents.

Le logiciel que l’on considère ici gère le catalogue des livres et le répertoire des adhérents :
— Le catalogue décrit l’ensemble des livres de la bibliothèque. Pour chaque livre, on dispose

des informations suivantes : son titre, le nom de son auteur, le nombre total d’exemplaires
acquis par la bibliothèque et le nombre d’exemplaires prêtés à un adhérent. Un livre
est identifié par son titre.

— Le répertoire décrit l’ensemble des adhérents de l’association. Pour chaque adhérent, on
dispose des informations suivantes : le nom de l’adhérent et l’ensemble (éventuellement
vide) des livres qu’il a en prêt actuellement. Un adhérent est identifié par son nom.

Les services attendus du logiciel sont les suivants : adhésion d’une nouvelle personne et départ
d’un adhérent ; acquisition de livres par la bibliothèque et suppression d’un titre du catalogue ;
emprunt et restitution d’un livre par un adhérent ; affichage d’états divers : du catalogue, du
répertoire, de titres disponibles, de titres empruntés, d’un hit parade des auteurs.

2. Représentation des informations
Le catalogue, le répertoire et les séquences d’emprunts sont tous représentés par des séquences
implantées dans des tableaux sous forme contiguë avec longueur explicite. Aucun ordre n’est
imposé entre les éléments de ces séquences.

On fixe le lexique suivant :
a) { Divers }

texte : type séquence de caractère { on fait ici abstraction de la représentation des textes }
{ Pour comparer des textes, on utilise les symboles habituels sur les nombres. Pour modifier la valeur
d’une variable de type texte, on utilise le symbole usuel d’affectation. }

b) { Le catalogue : séquence de livres }
{ Informations associées à un livre }

Livre : type
< Titre : texte { titre identifiant le livre }

Auteur : texte { nom identifiant l’auteur }
NbEx : entier > 0 { nombre d’exemplaires acquis par la bibliothèque }
NbPrêts : entier ≥ 0 { nombre d’exemplaires du livre prêtés }

>
{ Séquence de livres }

MaxLivres : constante de type entier > 0 { nombre maximum de livres catalogués }
AdCat : type entier sur [0. . .MaxLivres+1] { 0 et MaxLivres+1 sont prévues pour servir de marque }
CatLivres : tableau sur [0. . .MaxLivres+1] de Livre { le catalogue de la bibliothèque }
NbLivres : entier sur [0. . .MaxLivres] { nombre de livres dans le catalogue }
{ Les éléments de la séquence sont placés entre les indices 1 et NbLivres de CatLivres. CatLivres0 et
CatLivresMaxLivres+1 peuvent être utilisées pour placer une sentinelle. }

c) { Les emprunts : séquence d’adresses dans le catalogue }
MaxEmprunts : constante de type entier > 0 { nombre maximum d’emprunts }
AdEmp : type entier sur [0. . .MaxEmprunts+1] { 0 et MaxEmprunts+1 sont prévues pour servir de marque }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.24

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

d) { Le répertoire : séquence d’adhérents }
{ Informations associées à un adhérent }

Adhérent : type
< Nom : texte { nom identifiant l’adhérent }

TabEmp : tableau sur [0. . .MaxEmprunts+1] de AdCat { emprunts de l’adhérent }
NbEmp : entier sur [0. . .MaxEmprunts] { nombre d’emprunts de l’adhérent }
{ Les éléments de la séquence sont placés entre les indices 1 et NbEmp de TabEmp. TabEmp0 et
TabEmpMaxEmprunts+1 peuvent être utilisées pour placer une sentinelle. }

>

{ Séquence d’adhérents }
MaxAdh : constante de type entier > 0 { nombre maximum d’adhérents référencés }
AdRep : type entier sur [0. . .MaxAdh+1] { 0 et MaxAdh+1 sont prévues pour servir de marque }
RepAdh : tableau sur [0. . .MaxAdh+1] d’Adhérent { le répertoire de la bibliothèque }
NbAdh : entier sur [0. . .MaxAdh] { nombre d’adhérents dans le répertoire }
{ Les éléments de la séquence sont placés entre les indices 1 et NbAdh de RepAdh. RepAdh0 et
RepAdhMaxAdh+1 peuvent être utilisées pour placer une sentinelle. }

3. Compréhension de la représentation et du lexique
Q1. Illustration de la représentation
Illustrer par un dessin les données suivantes où P1,P2,P3 . . .dénotent des noms d’adhérents,
T1, T2, T3 . . .des titres de livres et A1, A2, A3 . . .des noms d’auteurs :

— Adhérents (et leurs emprunts) : P1 (T1), P2 (T2, T3), P3 (), P4 (T2)
— Livres : T3 par A1, 3 ex. ; T1 par A2, 10 ex. ; T4 par A3, 5 ex. ; T2 par A2, 2 ex.

Q2. Expressions de chemin
Pour accéder au titre du premier ouvrage dans le catalogue, on écrit CatLivres1.Titre.
De même, donner les phrases de la notation algorithmique permettant l’accès aux informations
suivantes :

— Nombre d’emprunts du kème adhérent dans le répertoire.
— Auteur du premier ouvrage emprunté par le kème adhérent.

4. Primitives de gestion de la bibliothèque
Dans ce qui suit, on étudie quelques exemples de primitives de gestion de la bibliothèque.
On prend pour hypothèse que les paramètres MaxLivres et MaxAdh servant à dimensionner
les tableaux représentant le catalogue et le répertoire sont choisis de telle manière qu’il y ait
toujours suffisamment de place lors d’un ajout.

Le type nommé Condition permet de rendre compte du bon fonctionnement de l’exécution d’une
opération ou de la détection d’une incorrection des paramètres fournis.

Condition : type [Normal, NomAdhérentErroné, NomAuteurErroné,
TitreNonCatalogué, LivreDéjàEmprunté, LivreNonEmprunté,
TitreNonDisponible, TropDEmprunts, SuppressionImpossible,
DépartImpossible, AuteurAbsent, AucunDisponible]

Q3. Recherche d’un élément
On spécifie les trois actions suivantes :

Fournir_AdRep : action(donnée N : texte ; résultat AR : AdRep, Présent : booléen)
{ Fournit dans AR l’adresse associée à l’adhérent de nom N, s’il est dans le répertoire. Dans ce cas,
Présent a la valeur vrai ; sinon Présent a la valeur faux et la valeur de AR n’est pas pertinente. }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.25

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

Fournir_AdCat : action(donnée T : texte ; résultat AC : AdCat, Présent : booléen)
{ Fournit dans AC l’adresse du livre de titre T, si ce livre est catalogué dans Cat. Dans ce cas, Présent
a la valeur vrai ; sinon Présent a la valeur faux et la valeur de AC n’est pas pertinente. }

Fournir_AdEmp : action(donnée AC : AdCat, TE : tableau sur [0. . .MaxEmprunts+1] de AdCat,
NE : entier sur [0. . .MaxEmprunts] ;

résultat AE : AdEmp, Présent : booléen)
{ Fournit dans AE l’adresse de l’emprunt AC, si cet emprunt appartient à la séquence TE de longueur
NE. Dans ce cas, Présent a la valeur vrai ; sinon Présent a la valeur faux et la valeur de AE n’est pas
pertinente. }

— Donner une réalisation de l’action Fournir_AdRep. Utiliser une technique de sentinelle.

Q4. Adhésion d’une nouvelle personne
Lors de l’adhésion d’un adhérent, celui-ci est enregistré dans le répertoire de manière à indiquer
qu’il n’y a encore aucun emprunt à son nom. On spécifie le lexique suivant :

EnregistrerAdhésion : action (donnée N : texte, résultat C : Condition)
{ Enregistre un nouvel adhérent de nom N dans le répertoire.

— Si à l’état initial le répertoire comporte déjà un élément de nom N, alors à l’état final C a la
valeur NomAdhérentErroné et le répertoire est inchangé.

— Sinon le répertoire est à jour (nombre de prêts nul) et C a la valeur Normal.
}

— Donner une réalisation de l’action EnregistrerAdhésion en utilisant Fournir_AdRep.

Q5. Acquisition de livres par la bibliothèque
La bibliothèque peut acquérir des exemplaires d’un nouveau titre ou d’un titre déjà catalogué.
S’il s’agit d’un nouveau titre, il est enregistré de manière à indiquer qu’aucun de ses exemplaires
n’a encore été prêté. On spécifie l’action suivante :

EnregistrerAcquisition :
action (donnée T, A : texte, NE : entier > 0 ; résultat C : Condition)

{ Enregistre l’acquisition de NE exemplaires du livre de titre T et d’auteur A.
— Si à l’état initial, le catalogue comporte un livre de titre T mais de nom d’auteur différent de

A, alors à l’état final le catalogue est inchangé et C a la valeur NomAuteurErroné.
— Sinon, à l’état final, C a la valeur Normal et le catalogue est à jour : ajout de NE exemplaires

pour un titre existant, ou ajout d’un nouveau titre avec NE exemplaires.
}

— Donner une réalisation de l’action EnregistrerAcquisition en utilisant Fournir_AdCat.

Q6. Consultation du catalogue
On spécifie les primitives suivantes :

EstAuteur : fonction (A : texte) −→ booléen { sera réutilisée en Q8 }
{ vrai ⇐⇒ A est l’auteur d’au moins un livre du catalogue. }

AfficherDisponibles : action (donnée A : texte, résultat C : Condition)
{ Affiche les titres des livres de l’auteur de nom A qui sont disponibles. Un livre est disponible s’il est
dans le catalogue et si au moins un de ses exemplaires n’est pas en prêt. À l’état final, C a la valeur :

— NomAuteurErroné si le catalogue ne comporte pas de titre d’auteur A,
— AucunDisponible si aucun livre de l’auteur n’est disponible,
— Normal sinon.

Il n’y a aucun affichage dans les deux premiers cas. }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.26

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

— Donner une réalisation de la fonction EstAuteur.
— Donner une réalisation de l’action AfficherDisponibles, en utilisant EstAuteur.

Q7. Emprunt d’un livre par un adhérent
L’enregistrement de l’emprunt d’un livre consiste à ajouter un élément dans la liste d’emprunts
de l’adhérent et à noter un prêt de plus pour ce livre dans le catalogue. On spécifie l’action
suivante :

EnregistrerEmprunt : action (donnée N, T : texte, résultat C : Condition)
{ Enregistre l’emprunt par l’adhérent de nom N d’un exemplaire du livre de titre T.

— Si les règles d’emprunt sont respectées (voir au début de l’énoncé), alors à l’état final, réper-
toire et catalogue sont à jour et C a la valeur Normal.

— Sinon, à l’état final, catalogue et répertoire sont inchangés et C a la valeur correspondant à
la situation rendant l’emprunt impossible (voir type Condition).

}

— Donner une réalisation de l’action EnregistrerEmprunt en utilisant Fournir_AdRep et
Fournir_AdCat.

Q8. Consultation du répertoire
— Donner une réalisation de l’action AfficherEmpAuteur spécifiée comme suit, en utilisant

Fournir_AdRep et EstAuteur :
AfficherEmpAuteur : action (donnée A, N : texte, résultat C : Condition)

{ Affiche les titres de livres de l’auteur de nom A et prêtés à l’adhérent de nom N. À
l’état final C a la valeur :
— NomAuteurErroné si le catalogue ne comporte pas de titre d’auteur A,
— NomAdhérentErroné si le répertoire ne comporte pas d’adhérent de nom N,
— AuteurAbsent si aucun livre écrit par l’auteur A n’a été prêté à l’adhérent de nom

N,
— Normal sinon.
Il n’y a aucun affichage dans les trois premiers cas. }

Q9. Restitution d’un livre par un adhérent
Pour enregistrer la restitution d’un livre on supprime l’emprunt de la liste d’emprunts de
l’adhérent dans le répertoire. On spécifie à cet effet l’action suivante :

EnregistrerRestitution : action (donnée N, T : texte, résultat C : Condition)
{ Enregistre la restitution par l’adhérent de nom N du livre de titre T.

— Si, à l’état initial, le répertoire ne comporte pas d’élément de nom N, ou si le catalogue ne
comporte pas de titre de nom T ou si l’adhérent de nom N n’a pas emprunté de livre de titre
T, alors à l’état final, répertoire et catalogue sont inchangés et C a la valeur rendant compte
de la situation (voir type Condition).

— Sinon, répertoire et catalogue sont à jour et C a la valeur Normal.
}

— Donner une réalisation de l’action EnregistrerRestitution en utilisant Fournir_AdRep,
Fournir_AdCat et Fourni_AdEmp.

Q10. Suppression d’un titre du catalogue
Un titre du catalogue ne peut être supprimé que si aucun de ses exemplaires n’est en prêt. On
spécifie l’action suivante :

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.27

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Tableaux

EnregistrerSuppression : action (donnée T : texte, résultat C : Condition)
{ Enregistre la suppression du catalogue du livre de titre T.

— Si à l’état initial, le catalogue ne comporte pas de titre de nom T, ou si au moins un des
exemplaires de ce titre est emprunté, alors à l’état final, le catalogue est inchangé et C a selon
le cas l’une des valeurs TitreNonCatalogué ou SuppressionImpossible.

— Sinon, à l’état final, le catalogue est à jour et C a la valeur Normal.
}

— Donner une réalisation de l’action EnregistrerSuppression en utilisant Fournir_AdRep.

Q11. Départ d’un adhérent
Un adhérent ne peut quitter l’association que lorsqu’il a restitué tous les livres empruntés. On
spécifie l’action suivante :

EnregistrerDépart : action (donnée N : texte, résultat C : Condition)
{ Enregistre le départ de l’adhérent de nom N.

— Si, à l’état initial, le répertoire ne comporte pas d’élément de nom N, ou si l’adhérent a au
moins un livre en prêt, alors à l’état final, répertoire et catalogue sont inchangés et C a selon
le cas l’une des valeurs NomAdhérentErroné ou DépartImpossible.

— Sinon, le répertoire est à jour et C a la valeur Normal.
}

— Donner une réalisation de l’action EnregistrerDépart en utilisant Fournir_AdRep.

Q12. Hit parade des auteurs
On spécifie l’action suivante :

AfficherHitParade : action
{ Affiche la liste des auteurs dont au moins un livre est actuellement en prêt. Pour chaque auteur,
on trouve son nom et le nombre total d’exemplaires de livres écrits par lui et actuellement en prêt.
La liste des auteurs est affichée en ordre décroissant du nombre de livres en prêt. }

Indication pour la réalisation
Pour élaborer le hit parade, on parcourt le catalogue et on construit progressivement un tableau
intermédiaire, nommé Hit. Chaque élément du tableau est un score, couple <auteur, nombre
de lecteurs>. L’itération construisant Hit doit respecter l’invariant suivant : "Hit est classé en
ordre décroissant du nombre de livres en prêt".

On suppose ici que l’on connaît le nombre maximum Nmax d’auteurs de livres du catalogue.

On complète donc le lexique comme suit :

Nmax : constante de type entier > 0 { nombre maximum d’auteurs de livres dans le catalogue }
Score : type <NA : texte, NbE : entier ≥ 0 > { <Nom d’Auteur, Nombre d’Emprunts> }
Hit : tableau sur [0. . .Nmax+1] de Score
NbScores : entier sur [0. . .Nmax]

{ Les scores sont placés dans le tableau Hit entre les positions 1 et NbScores. Lorsque la table est vide,
NbScores=0. Dans Hit, les noms d’auteurs sont distincts 2 à 2 et les scores sont en ordre décroissant
selon le nombre de lecteurs. Les positions 0 et Nmax+1 sont prévues pour utiliser, le cas échéant,
une technique de sentinelle. }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

3.28

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

4. Séquences et Chaînage

A. Eléments de cours
a) Terminologie

Cellule : case d’un tableau, champ d’un produit, mot mémoire.

Adresse : indice d’un tableau, adresse en mémoire.

Accès direct : accès au contenu d’une cellule par son adresse.

Identificateur de variable : un compilateur associe une adresse à chaque identificateur
de variable. Utiliser l’identificateur pour dénoter la valeur de la variable implique un
accès direct au travers de l’adresse associée.

Indirection, accès indirect : une cellule d’adresse A contient l’adresse B d’une autre
cellule. L’adresse A permet d’accéder indirectement au contenu de la cellule d’adresse
B.

Liens explicites : représentent des associations entre informations et sont représentés par
des adresses. Association d’une même information et de plusieurs autres informations.
Association d’un élément d’une séquence et de son successeur.

b) Représentation chaînée d’une séquence

b.1. Principes

On utilise un espace mémoire formé d’un ensemble de cellules accessibles par leur adresse.
Chaque cellule est un doublet pouvant contenir un élément et une adresse de cellule. Par conven-
tion, il existe une adresse particulière appelée Nil qui représente "nulle part".
Une séquence est représentée sous forme chaînée à l’aide d’un ensemble de doublets : chaque
élément de la séquence se trouve dans un doublet qui contient l’adresse de son successeur. Pour
distinguer le dernier élément de la séquence, on convient que l’adresse de son successeur vaut
Nil.
L’accès à une liste chaînée non vide se fait par l’intermédiaire de l’adresse de la cellule com-
portant le premier élément de la liste. Cette adresse est appelée adresse de tête de la liste (plus
brièvement tête de liste). Une liste vide est caractérisée par une tête de valeur Nil. L’accès à
un élément ou à l’adresse de son successeur se fait toujours indirectement par l’adresse de la
cellule qui contient ces valeurs. Le dessin 4.1 figure une liste chaînée d’adresse de tête T :
Un tel dessin permet de faire abstraction des valeurs d’adresse.
Les conventions graphiques sont les suivantes :

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.1

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

T

Figure 4.1 – Représentation d’une liste chaînée

Une flèche fournit deux informations : le point d’arrivée (à n’importe
quel endroit du contour d’une cellule) désigne une adresse de doublet ;
le point de départ (à l’intérieur d’une cellule) désigne l’endroit où cette
adresse est mémorisée, que ce soit dans un doublet ou dans une variable
de type adresse.

Représentation d’un lien vers "nulle part".

Une variable de type adresse.

Une cellule structurée en doublet comportant un champ de type
adresse.

b.2. Lexique général pour la description d’une liste chaînée
De manière générale, on utilise un lexique de la forme suivante :

Élément : type { type des éléments que l’on veut chaîner }
adCel : type { adresses de cellules de type Cel }
Cel : type <Elt : Élément, Suc : adCel> { élément et lien vers son successeur }
Nil : constante de type adCel { lien vers "nulle part" }
T : adCel { une adresse de tête par liste considérée }

{ Une liste chaînée non vide est accessible par son adresse de tête T. Le dernier élément d’une liste
non vide a Nil pour successeur. T = Nil caractérise la liste vide. }

La définition du type adCel et la valeur de la constante Nil doivent être précisées selon que
le chaînage est géré à l’aide de pointeurs (cf ci-dessous 4.A.c)) ou dans un tableau (cf ci-
dessous 4.A.d)).

b.3. Interface pour la gestion de l’espace mémoire

Une cellule de l’espace mémoire est dans l’état occupé si elle est utilisée pour représenter un
élément d’une séquence. Dans le cas contraire, la cellule est dans l’état libre. L’ensemble des
cellules libres constitue la mémoire libre.
L’espace mémoire est dans l’état mémoire saturée lorsque toutes ses cellules sont occupées (la
mémoire libre est vide). Il est dans l’état mémoire vide lorsque toutes ses cellules sont libres.
La valeur d’un doublet ne permet en aucun cas de déterminer si la cellule qui le contient
est libre ou occupée. Un système de gestion de la mémoire doit maintenir des informations
spécifiques permettant d’identifier les cellules libres, de manière à pouvoir répondre à deux
types de requêtes :

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.2

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

— requête d’allocation : l’utilisateur demande une adresse de cellule libre pour pouvoir
l’utiliser à son gré. Le système choisit l’une des cellules libres, en fournit l’adresse à
l’utilisateur et la marque comme étant occupée.

— requête de libération : l’utilisateur informe le système qu’il n’utilisera plus une cellule qui
lui a été allouée auparavant. Le système marque cette cellule comme étant à nouveau
libre.

Pour faire abstraction des modalités de cette gestion mémoire, nous utilisons les primitives
suivantes :

MémoireSaturée : fonction −→ booléen { vrai ⇐⇒ la mémoire est saturée }
Allouer : action (résultat A : adCel)

{ à l’état final, A contient l’adresse d’une cellule qui était dans l’état "libre". Cette cellule est dans
l’état "occupé". Pré-condition : la mémoire n’est pas saturée }

Libérer : action (donnée A : adCel)
{ à l’état final, la cellule d’adresse A est libre et la mémoire n’est pas saturée. Pré-condition : A 6=
Nil }

b.4. Modifications du chaînage

Pour schématiser les modifications des liens de chaînage d’une liste, nous représentons sur le
même dessin l’état initial et l’état final avec les conventions suivantes :

— Une flèche pleine représente l’état initial et une flèche en pointillés représente l’état final.
— Les flèches en pointillés sont étiquetées par des entiers qui définissent l’ordre dans lequel

les modifications de chaînage doivent être faites.
Sur un tel dessin, certains doublets ou variables de type adresse ont deux flèches qui les quittent,
l’une en plein, l’autre en pointillés : ce changement d’état se traduit au niveau de l’algorithme
par une affectation portant sur un nom (de variable ou de champ de doublet) de type adresse.
A titre d’exemple, nous schématisons l’insertion d’un élément E dans une liste, après l’élément
situé dans la cellule d’adresse a.

T

1

a

AC

2

3
4

E

Figure 4.2 – Modifications de chaînage dans une liste chaînée

Le dessin 4.2 illustre l’analyse de l’insertion. Il faut :
— (1) Allouer une cellule de doublet libre : son adresse est rangée dans la variable de nom

AC, paramètre de l’action Allouer.
— (2) Ranger E dans ce doublet.
— (3,4) Connecter la cellule d’adresse AC après celle d’adresse a, par modification de deux

liens de chaînage.
Lorsque l’insertion se fait en tête, a n’est pas défini : c’est alors la valeur de T qui doit être
modifiée par l’opération 4.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.3

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

b.5. Représentation chaînée avec élément fictif de tête

Dans la représentation chaînée avec élément fictif de tête, l’adresse donnant accès à la liste est
l’adresse d’une cellule dont :

— le champ destiné à contenir un élément de la séquence n’a pas de valeur spécifiée : on
l’appelle élément fictif pour indiquer qu’il n’appartient pas à la séquence représentée.

— le champ destiné à contenir l’adresse du successeur
— contient l’adresse de la cellule contenant le premier élément de la séquence représen-

tée, si elle n’est pas vide,
— contient Nil si la séquence représentée est vide.

Ceci est illustré par la figure 4.3. Cette représentation est utilisée pour simplifier la réalisation
de certains algorithmes (voir l’exemple E4.6 et l’exercice E4.14).

� �

� �

� �

� �

� �

� �

� �

� �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

FF

Liste vide
Le fictif n’a pas de successeur

Liste non vide
Le successeur du fictif est le 1er élément de la séquence

Figure 4.3 – Représentation chaînée avec fictif

c) Gestion du chaînage à l’aide de pointeurs

c.1. Valeurs et variables de type Pointeur
Le langage fournit un constructeur de type pointeur de Pour manipuler un ensemble
d’adresses de cellules comportant des éléments d’un type nommé X, on introduit un nouveau
type, nommé adX par exemple, de la manière suivante :

adX : type pointeur de X { une valeur de type adX est l’adresse d’une cellule de type X }

Le langage fournit de plus une constante nommée Nil qui appartient à tout type construit avec
le constructeur pointeur de
A étant un pointeur (une adresse de type pointeur), A↑ dénote le contenu de la cellule dont A
est l’adresse : si A est de type pointeur de X alors A↑ est de type X.
L’écriture Nil↑ est incorrecte (Nil représentant "nulle part", il n’y a pas lieu de chercher à
accéder à son contenu ou de le modifier).
Les primitives de gestion de l’espace mémoire Allouer, Libérer, et MémoireSaturée sont
des primitives du langage. L’initialisation de cet espace est réalisée par le système à l’exécution.

c.2. Lexique général

Élément : type { type des éléments que l’on veut chaîner }
adCel : type pointeur de Cel
{ Nil est pré-défini dans le langage et n’apparaît donc pas dans le lexique }
Cel : type <Elt : Élément, Suc : adCel> { élément et lien vers son successeur }
T : adCel { une adresse de tête par liste considérée }

{ Une liste chaînée non vide est accessible par une adresse de tête T. Le dernier élément d’une liste
non vide a Nil pour successeur. T = Nil caractérise la liste vide. }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.4

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

Un élément de liste chaînée est accessible indirectement via l’adresse A de la cellule qui le
comporte : A↑ dénote le doublet correspondant, A↑.Elt dénote l’élément et A↑.Suc dénote le
lien vers son successeur.

c.3. Schémas de traitement séquentiel

Les schémas de parcours et de recherche sont construits en raisonnant sur la suite des adresses
des doublets marquée par Nil.

Parcours

AC : adCel
Initialiser le traitement ; AC ←− T
tant que AC 6= Nil

Traiter AC↑.Elt ; AC ←− AC↑.Suc

Recherche du premier élément vérifiant une propriété P

AC : adCel
P : fonction (E : Elément) −→ booléen
AC ←− T ; tant que AC 6= Nil et puis non P(AC↑.Elt) : AC ←− AC↑.Suc
si AC = Nil alors { non trouvé } •••
sinon { trouvé en AC } •••

d) Gestion du chaînage dans un tableau mémoire

L’espace mémoire est décrit par un tableau de doublets. Une adresse de cellule est un indice
dans ce tableau.

d.1. Lexique général
Le lexique donné en 4.A.b)(ii) ci-dessus est précisé de la manière suivante :

Tmem : constante de type entier > 0 { taille de la mémoire }
adCel : type entier sur [0. . .Tmem] { adresses de cellules de type Cel }
Mem : tableau sur [1. . .Tmem] de Cel
Nil : constante 0 de type adCel { lien vers "nulle part" }
Élément : type { type des éléments que l’on veut chaîner }
Cel : type <Elt : Élément, Suc : adCel> { élément et lien vers son successeur }
T : adCel { une adresse de tête par liste considérée }

{ Une liste chaînée non vide est accessible par une adresse de tête T. Le dernier élément d’une liste
non vide a Nil pour successeur. T = Nil caractérise la liste vide. }

Un élément de liste chaînée est accessible indirectement via l’adresse A de la cellule qui le com-
porte : MemA dénote le doublet correspondant, MemA.Elt dénote l’élément et MemA.Suc
dénote le lien vers son successeur.

d.2. Schémas de traitement séquentiel

Les schémas de parcours et de recherche sont construits en raisonnant sur la suite des adresses
des doublets marquée par Nil.
Parcours

AC : adCel
Initialiser le traitement ; AC ←− T
tant que AC 6= Nil

Traiter MemAC .Elt ; AC ←− MemAC .Suc

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.5

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

Recherche du premier élément vérifiant une propriété P

AC : adCel
AC ←− T ; tant que AC 6= Nil et puis non P(MemAC .Elt) : AC ←− MemAC .Suc
si AC = Nil alors { non trouvé } •••
sinon { trouvé en AC } •••

d.3. Réalisation des primitives de gestion de l’espace mémoire

Nous illustrons ici une technique classique (parmi d’autres) utilisant les liens de chaînage des
doublets. Les cellules libres sont chaînées entre elles dans un ordre quelconque, formant ainsi
une liste chaînée appelée liste libre. Cette liste évolue dans le temps comme une pile :

— Pour initialiser la liste libre avec toutes les cellules, elles sont chaînées entre elles dans
l’ordre de leurs adresses.

— Lors d’une allocation (demande d’une adresse de cellule libre), l’adresse de cellule fournie
est celle du premier élément de la liste libre : elle est alors déconnectée de la liste libre.

— Lors de la libération d’une cellule (restitution d’une cellule qui n’est plus occupée), elle
est connectée en tête de la liste libre.

Les primitives de gestion sont alors réalisées comme suit :

Tlibre : adCel { adresse de tête de la liste libre }
InitialiserMémoire : action

{ e.i. indifférent ; e.f. : la mémoire est vide }
MémoireSaturée :

retour : Tlibre = Nil
Allouer(A) :

A ←− Tlibre ; Tlibre ←− MemT libre.Suc { suppression en tête de liste libre }
Libérer(A) :

MemA.Suc ←− Tlibre ; Tlibre ←− A { insertion en tête de liste libre }
InitialiserMémoire :

pour AC allant de 1 à Tmem-1 : MemAC .Suc ←− AC + 1
MemTmem.Suc ←− Nil
Tlibre ←− 1

B. Exemples d’exercices rédigés
a) Gestion du chaînage à l’aide de pointeurs

Dans les exemples qui suivent, les liens de chaînage sont représentés par des pointeurs
(cf 4.A.c)) et on traite des listes d’entiers.

adCelEnt : type pointeur de CelEnt { adresses de cellules }
CelEnt : type <E : entier, Suc : adCelEnt> { élément et lien vers son successeur }
{ Une liste chaînée est caractérisée par son adresse de tête. }

Exemple E4.1 : Valeur du dernier élément
Étant donnée une liste chaînée d’entiers, réaliser un algorithme qui affiche la valeur du dernier
élément de la liste (ou un message si la liste est vide). La liste est donnée par son adresse de
tête T.

Pour une liste non vide, le dernier élément est situé dans la cellule dont le lien successeur vaut
Nil. On adapte un schéma de recherche, sachant que cet élément existe toujours dans ce cas.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.6

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

T : adCelEnt { adresse de tête de la liste donnée }
AC : adCelEnt { adresse de l’élément courant }
si T = Nil alors Écrire("liste vide")
sinon AC ←− T

tant que AC↑.Suc 6= Nil { le dernier existe }
AC ←− AC↑.Suc

Écrire (AC↑.E)

Exemple E4.2 : Construction d’une liste chaînée
Réaliser un algorithme qui construit une liste chaînée des entiers de 1 à n (n ≥ 0 donné),
en ordre croissant. Si n est nul, la liste construite est vide. On suppose que l’espace mémoire
comporte au moins n cellules libres.

n : constante de type entier ≥ 0
T : adCelEnt { adresse de tête de la liste créée }

(i) Version 1, par ajouts en queue : parcours de l’intervalle [1. . .n].
Au moment de traiter l’entier i, la liste chaînée des entiers de l’intervalle [1. . .i-1] a été
construite : il s’agit d’un ajout en queue. Ceci nécessite de maintenir une adresse de queue, soit
Q. La liste est initialisée avec l’élément de valeur 1. Le dessin 4.4 figure l’invariant de l’itération
et les modifications de chaînage qui doivent être effectuées dans le corps de l’itération (flèches
en pointillés).

T

1 2 i-2 i-1 i ?

Q AC

Figure 4.4 – Construction d’une liste chaînée par ajouts en queue

Q : adCelEnt { adresse courante de queue }
AC : adCelEnt { adresse de cellule pour l’élément courant }
si n = 0 alors T ←− Nil { construction de la liste vide }
sinon { création d’une liste singleton avec adresse de queue }

Allouer (T) ; T↑.E ←− 1 ; Q ←− T
pour i allant de 2 à n

Allouer (AC) ; AC↑.E ←− i { création nouveau doublet }
Q↑.Suc ←− AC ; Q ←− AC { connexion en queue }

Q↑.Suc ←− Nil

(ii) Version 2, par ajouts en tête : parcours en sens inverse de l’intervalle [1. . .n].
Au moment de traiter l’entier i, la liste chaînée des entiers de i+1 à n a déjà été construite :
il s’agit d’un ajout en tête.

AC : adCelEnt { adresse de doublet pour l’élément courant }
T ←− Nil { construction de la liste vide }
pour i allant de n à 1, pas -1

Allouer (AC) ; AC↑.E ←− i { création nouveau doublet }
AC↑.Suc ←− T ; T ←− AC { connexion en tête }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.7

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

T

AC

i

ni+1 i+2 n-1

Figure 4.5 – Construction d’une liste chaînée par ajouts en tête

Exemple E4.3 : Une liste est-elle en ordre croissant ?
On veut déterminer si une séquence non vide d’entiers est en ordre croissant. La séquence
est donnée sous forme d’une liste chaînée. Réaliser une fonction nommée EstCrois spécifiée
comme suit :

EstCrois : fonction (T : adCelEnt) −→ booléen
{ vrai ⇐⇒ la séquence d’entiers représentée par la liste chaînée d’adresse de tête T est en ordre
croissant. Pré-condition : T 6= Nil }

On raisonne sur la séquence des couples d’éléments consécutifs de la séquence donnée : recherche
d’un couple <e,f> tel que e > f. On applique un schéma de parcours (version 1) ou de recherche
avec arrêt dès que possible (version 2).

(i) Version 1, schéma de parcours

EstCrois(T) : { T 6= Nil }
AC, AP : adCelEnt { adresses de l’élément courant et de son prédécesseur }
Existe : booléen
Existe ←− faux
AP ←− T ; AC ←− T↑.Suc { premier couple }
tant que AC 6= Nil

Existe ←− Existe ou AP↑.E > AC↑.E
AP ←− AC ; AC ←− AP↑.Suc { couple suivant }

retour : non Existe

(ii) Version 2, schéma de recherche

EstCrois(T) : { T 6= Nil }
AC, AP : adCelEnt { adresses de l’élément courant et de son prédécesseur }
AP ←− T ; AC ←− T↑.Suc { premier couple }
tant que AC 6= Nil et puis AP↑.E ≤ AC↑.E

AP ←− AC ; AC ←− AP↑.Suc { couple suivant }
retour : AC=Nil

Exemple E4.4 : Inversion d’une liste chaînée
On donne une liste chaînée d’éléments de type quelconque. Décrire (spécification, réalisation)
une action qui construit la liste chaînée inverse de la liste donnée, par modification des liens de
chaînage.
Spécification

Élément : type
Cel : type <Elt : Élément, Suc : adCel> ; adCel : type pointeur de Cel

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.8

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

Inverser : action (donnée-résultat T : adCel)
{ Inverse la liste donnée par son adresse de tête T, par modification des liens de chaînage. À l’état
final, T est l’adresse de tête de la liste inverse. }

Réalisation
On raisonne sur deux listes chaînées nommées L et LI : L, de tête T, comporte les éléments
qui n’ont pas encore été traités, dans l’ordre initial ; LI, de tête TI, comporte les éléments déjà
traités, en ordre inverse par rapport à l’ordre initial. A chaque étape, la cellule de tête de L est
déconnectée, pour être connectée en tête de LI.

TTI

X

Figure 4.6 – Inversion d’une liste chaînée

Inverser(T) :
TI : adCel { adresse de tête de LI }
X : adCel { pour déconnexion, connexion }
TI ←− Nil { construction de la liste vide }
tant que T 6= Nil

X ←− T ; T ←− T↑.Suc { déconnexion en tête de L }
X↑.Suc ←− TI ; TI ←− X { connexion en tête de LI }

T ←− TI

Exemple E4.5 : Tri par insertion
Réaliser un algorithme de tri selon le principe du "tri par insertion" : dans un parcours de la
séquence, l’élément courant est inséré en bonne place parmi ceux qui le précèdent (qui sont en
ordre croissant). L’algorithme doit procéder par modification des liens de chaînage de cette liste,
les valeurs des éléments n’étant pas déplacées. La donnée est une liste chaînée d’entiers.

On raisonne sur deux listes chaînées nommées L1 et L2 (voir figure ci-dessous) : L1, de tête
T et de queue Q, est la liste des éléments déjà traités, en ordre croissant ; L2, dont le premier
élément est l’élément courant, est la liste des éléments qui restent à traiter.
AC est l’adresse de l’élément courant, tête de L2. Traiter l’élément courant consiste à le connec-
ter en bonne place dans L1 : dans le cas général, il faut trouver les deux cellules consécutives,
d’adresses ap et a, entre lesquelles doit avoir lieu l’insertion. Il y a deux cas particuliers :
insertion en tête (ap n’est pas défini) ou insertion en queue (AC est en place).
Le point d’insertion dans L1 de la cellule d’adresse AC peut être défini de deux manières :

— a est l’adresse du premier doublet (dans le sens du chaînage) vérifiant a↑.E > AC↑.E ;
— ou bien a est l’adresse du premier doublet vérifiant a↑.E ≥ AC↑.E.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.9

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

T ap a Q AC

Figure 4.7 – Tri par insertion, cas général

Nous traitons la première solution qui conserve l’ordre entre les éléments égaux (tri stable).
adCelEnt : type pointeur de CelEnt ; CelEnt : type <E : entier ; Suc : adCelEnt>
T : adCelEnt { adresse de tête de la liste donnée et de la liste résultat }
Q : adCelEnt { adresse de queue de L1 }
AC : adCelEnt { adresse du doublet courant : tête de L2. Q↑.Suc = AC }
EC : entier { Élément courant : EC = AC↑.E }
ap, a : adCelEnt { adresses des doublets entre lesquels il faut insérer EC }
si T 6= Nil alors

Q ←− T { L1 est initialisée par une liste singleton }
AC ←− Q↑.Suc { premier élément à traiter }
tant que AC 6= Nil

{ L1 est triée. L’élément courant (premier de L2) a pour adresse AC = Q↑.Suc }
EC ←− AC↑.E
si Q↑.E ≤ EC alors Q ←− AC { AC est déjà en place }
sinon { Q↑.E > EC : insérer EC quelque part avant Q }

Q↑.Suc ←− AC↑.Suc { déconnexion de AC }
si EC < T↑.E alors { insérer EC en tête de L1 }

AC↑.Suc ←− T ; T ←− AC
sinon { rechercher ap et a entre lesquels insérer EC. Q est sentinelle }

ap ←− T ; a ←− ap↑.Suc
tant que a↑.E ≤ EC { on est sûr d’arrêter au plus loin avec a = Q }

ap ←− a ; a ←− ap↑.Suc
ap↑.Suc ←− AC ; AC↑.Suc ←− a { insertion entre ap et a }

AC ←− Q↑.Suc { obtention du prochain élément à traiter }

Exemple E4.6 : Interclassement de deux listes triées (utilisation d’un
élément fictif)
On étudie l’interclassement de deux séquences d’entiers triées. Les séquences sont données
sous forme de deux listes chaînées L1 et L2 de têtes T1 et T2. Réaliser une action nommée
Interclasser spécifiée comme suit :

CelEnt : type <E : entier, Suc : adCelEnt> ; adCelEnt : type pointeur de CelEnt
Interclasser : action (donnée-résultat T1, T2 : adCelEnt)

{ Interclasse deux listes chaînées d’entiers en ordre croissant L1 et L2, de têtes T1 et T2. À l’état
final, le résultat est fourni par la liste L1 ; la liste L2 est vide. L’algorithme procède par modification
des liens de chaînage de L1 et L2, sans déplacement des éléments. }

Le principe choisi est de modifier L1 par insertion en bonne place de chacune des cellules de
L2. On construit une itération de parcours simultané des deux listes : AC1 et AC2 étant les

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.10

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

adresses des éléments courants, on détermine s’il y a lieu de placer la cellule d’adresse AC2
avant la cellule d’adresse AC1. Pour réaliser les insertions, on maintient l’adresse AP1 de la
cellule précédant celle d’adresse AC1. AP1 n’est pas définie lorsque AC1 est la tête de L1.
Pour éliminer ce cas particulier, un élément fictif, d’adresse F, est placé en tête de L1. Il est
supprimé à la fin de l’interclassement.

AP1F AC1

AC2

Figure 4.8 – Interclassement de deux listes chaînées

Interclasser(T1, T2)
F : adCelEnt { pour l’élément fictif en tête de L1 }
AC1, AC2 : adCelEnt { adresses des éléments courants }
AP1 : adCel { adresse du prédécesseur de l’élément d’adresse AC1 }
X : adCel { auxiliaire pour déconnexion, connexion }
Allouer(F) ; F↑.Suc ←− T1 { placement d’un élément fictif en tête de L1 }
AP1 ←− F ; AC1 ←− T1 ; AC2 ←− T2
tant que AC1 6= Nil et AC2 6= Nil
{ Tous les éléments précédant les éléments d’adresses AC1 et AC2 dans les listes données initialement
se trouvent entre les adresses F↑.Suc et AP1, et ceci en ordre croissant. De plus, si AP1 6= F, AP1↑.E≤
AC1↑.E et, si AC2 6= nil, alors AP1↑.E ≤ AC2↑.E. }

si AC1↑.E ≤ AC2↑.E alors
AP1 ←− AC1 ; AC1 ←− AP1↑.Suc

sinon { déconnecter AC2 pour le connecter entre AP1 et AC1 }
X ←− AC2 ; AC2 ←− AC2↑.Suc { déconnexion }
AP1↑.Suc ←− X ; X↑.Suc ←− AC1 ; AP1 ←− X { connexion }

{ Le cas échéant, compléter par ce qui reste dans L2 }
si AC2 6= Nil alors AP1↑.Suc ←− AC2
T1 ←− F↑.Suc ; Libérer(F) { suppression du fictif de tête }
T2 ←− Nil

Remarque : la variable AC2 peut être omise, en la remplaçant par la variable T2.

b) Séquences de séquences

Exemple E4.7 : Partition d’un ensemble de mots
On considère un ensemble E de mots et la partition P des mots de E selon leur initiale. Chaque
classe de P est caractérisée par une lettre de l’alphabet : c’est le sous-ensemble de E de tous les
mots ayant cette lettre pour initiale.
Les ensembles sont représentés par des séquences sans répétition : E est une séquence de mots ;
P est une séquence de classes ; chaque classe est une séquence non vide de mots.
Toutes ces séquences sont sous forme de listes chaînées : E est représenté par une liste de
tête TE ; P est représentée par une liste de tête TP dont les éléments sont les têtes des listes
chaînées représentant les classes. La figure 4.9 schématise cette représentation.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.11

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

Partition P

Ensemble E

TE

TP

Cellules de mots

Cellules de classes

Classes

Cellules de mots

Variable de type adCelC

Variable de type adCelM Cellule de type CelM

Cellule de type CelC

Figure 4.9 – Partition d’un ensemble de mots

On fait abstraction de la représentation des mots à l’aide d’un type nommé Mot.
Aucun ordre n’est imposé sur les listes (de classes ou de mots). On utilise le lexique suivant :

{ Mots }
Lettre : type caractère { restreint aux lettres de l’alphabet }
Mot : type séquence non vide de Lettre

{ M étant de type Mot, premier(M) est l’initiale de M ; pour affecter une valeur de mot à une
variable de type Mot, on utilise le symbole d’affectation usuel (←−). }

{ Listes de mots }
adCelM : type pointeur de CelM

CelM : type <M : Mot, Msuiv : adCelM>

{ Listes de Classes (ensembles de mots de même initiale) }
adCelC : type pointeur de CelC

CelC : type <T : adCelM, Csuiv : adCelC>

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.12

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

{ L’ensemble E et la partition P }
TE : adCelM { tête de la liste de mots représentant E }
TP : adCelC { tête de la liste de classes représentant P }

Q1. Une expression de chemins dans la structure
On donne l’adresse de tête TP de la liste de classes représentant la partition d’un ensemble
de mots : compléter l’instruction Écrire(••••••) pour afficher la lettre initiale des mots de la
deuxième classe de la partition ; donner la pré-condition qui doit être satisfaite avant l’exécution
de cette instruction.

— TP↑.Csuiv est l’adresse du deuxième élément de la liste représentant P ou Nil s’il n’y en
a pas (précondition : TP 6=Nil) ;

— (TP↑.Csuiv)↑.T est l’adresse de tête de la liste non vide représentant la deuxième classe
de P (précondition : TP6=Nil et puis TP↑.Csuiv 6=Nil) ;

— ((TP↑.Csuiv)↑.T)↑.M est le premier mot de la deuxième de classe de P (précondition :
TP6=Nil et puis TP↑.Csuiv 6=Nil)

— la réponse est donc :

{ précondition : TP6=Nil et puis TP↑.Csuiv 6=Nil }
Écrire (premier(((TP↑.Csuiv)↑.T)↑.M))

Q2. Construction de la partition
Donner la réalisation d’un algorithme qui pour E donné construit la partition P associée. Pour
créer les cellules des listes représentant P, on utilisera la primitive Allouer. La liste représentant
E n’est pas modifiée.

(i) Principe général de réalisation
Pour chaque mot de E (parcours), recopier le mot dans une nouvelle cellule de mot (allocation) ;
s’il existe dans P (recherche) une classe correspondant à l’initiale du mot, ajouter le mot en
tête de cette classe (aucun ordre imposé) ; sinon créer une nouvelle cellule de classe (allocation)
avec ce mot, par ajout en tête de la liste de classes (aucun ordre imposé).
(ii) Schémas de modification des liens

TE

ACM

TP ACC

NCM

Figure 4.10 – Cas n◦1 : ajout dans une classe existante

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.13

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

TP ACC

ACM

TE

NCC

NCM

Figure 4.11 – Cas n◦2 : création d’une nouvelle classe

(iii) Algorithme

ACM : adCelM { pour le parcours de E. }
ACC : adCelC { pour la recherche dans P. }
NCM : adCelM { pour la création de cellules de mots. }
NCC : adCelC { pour la création de cellules de classes. }

TP ←− Nil { créer la partition vide }
ACM ←− TE
tant que ACM 6= Nil

Allouer(NCM) ; NCM↑ ←− <ACM↑.M, Nil> { créer une cellule de mot }
{ recherche de la classe de l’élément courant }
ACC ←− TP
tant que ACC 6= Nil et puis premier(ACM↑.M) 6= premier((ACC↑.T)↑.M)

ACC ←− ACC↑.Csuiv
si ACC 6= Nil alors { insertion en tête de classe }

NCM↑.Msuiv ←− ACC↑.T ; ACC↑.T ←− NCM
sinon { création d’une nouvelle classe }

Allouer(NCC) ; NCC↑ ←− <NCM, TP> ; TP ←− NCC
ACM ←− ACM↑.Msuiv

c) Gestion du chaînage dans un tableau mémoire

Les liens de chaînage sont représentés par des indices dans un tableau mémoire (cf 4.A.d)).
Pour des listes d’entiers, on utilise le lexique suivant :

TmemEnt : constante de type entier > 0 { taille de la mémoire }
adCelEnt : type entier sur [0. . .TmemEnt] { adresses de cellules }
Nil : constante 0 de type adCelEnt { lien vers "nulle part" }
MemEnt : tableau sur [1. . .TmemEnt] de CelEnt
CelEnt : type <E : entier, Suc : adCelEnt> { élément et lien vers son successeur }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.14

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

Exemple E4.8 : Valeur du dernier élément (E4.1 suite)
L’algorithme donné dans l’exemple E4.1 est modifié comme suit :

T : adCelEnt { adresse de tête de la liste donnée }
AC : adCelEnt { adresse de l’élément courant }
si T = Nil alors Écrire("liste vide")
sinon AC ←− T

tant que MemEntAC .Suc 6= Nil { le dernier existe }
AC ←−MemEntAC .Suc

Écrire (MemEntAC .E)

Exemple E4.9 : Construction d’une liste chaînée (E4.2 suite)
La version 1 de l’algorithme donnée dans l’exemple E4.2 est modifiée comme suit :

Q : adCelEnt { adresse courante de queue }
AC : adCelEnt { adresse de cellule pour l’élément courant }
si n = 0 alors T ←− Nil { construction de la liste vide }
sinon { création d’une liste singleton avec adresse de queue }

Allouer (T) ; MemEntT .E ←− 1 ; Q ←− T
pour i allant de 2 à n

Allouer (AC) ; MemEntAC .E ←− i { création nouveau doublet }
MemEntQ.Suc ←− AC ; Q ←− AC { connexion en queue }

MemEntQ.Suc ←− Nil

C. Exercices
a) Compréhension de la représentation chaînée

E4.10 : Compréhension de la représentation chaînée
(i) Une liste de prénoms
Pour concrétiser la notion de chaînage, on représente la mémoire par un tableau : les adresses
sont des indices dans ce tableau, et un lien de chaînage est représenté par une telle adresse.
On étudie une liste chaînée de prénoms en ordre alphabétique. La mémoire est un tableau de
15 doublets <prénom, adresse>, nommé Mem. L’adresse de tête se trouve dans la variable T.

T

Mem

1
2
3

Jean
Valentin

15

Anne

— Au départ, la liste est vide et on y ajoute successivement les trois prénoms suivants : Jean,
Valentin, Anne. A l’issue de ces opérations, on observe l’état de la mémoire. Complétez
le dessin ci-dessus pour que le chaînage décrive l’ordre alphabétique entre les prénoms.

— On ajoute le prénom Laure en position 4. Modifiez en conséquence le dessin précédent
pour que le chaînage décrive l’ordre alphabétique. Combien de liens ont-ils été modifiés ?

— De même, observer les modifications de l’état de la mémoire au fur et à mesure de l’ajout
des prénoms Amélie, Victor, Agnès, Léa, en positions 5 à 8.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.15

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

— Quel est le nombre de modifications de liens engendré par l’insertion d’un prénom?
— Observer à nouveau les modifications de l’état de la mémoire au fur et à mesure de la

suppression des prénoms Agnès, Victor, Laure. Quel est le nombre de modifications de
liens engendrés par la suppression d’un prénom?

(ii) Une liste chaînée de trois caractères
On donne la séquence de caractères [’a’, ’p’, ’v’] sous forme d’une liste chaînée d’adresse de tête
T, comme l’illustre la figure suivante.

T

’a’ ’p’ ’v’

— Illustrer sur le dessin ci-dessus le principe d’insertion du caractère ’d’ dans la liste, à la
bonne place pour conserver l’ordre alphabétique : faire apparaître les liens qui doivent
être modifiés par des flèches en pointillé.

— Donner le lexique correspondant à cette représentation (voir 4.A.c)(ii)).
— Pour chaque composant de chaque cellule de la liste, donner l’expression permettant

d’accéder à sa valeur.
— Donner la suite d’instructions réalisant l’insertion du caractère ’d’.

b) Gestion du chaînage à l’aide de pointeurs

Dans les exercices qui suivent, le chaînage est représenté à l’aide de pointeurs (cf 4.A.c)).
E4.11 : Itérations simples sur les listes chaînées
On donne une séquence S d’entiers sous forme d’une liste chaînée.

— Donner le lexique correspondant.
— Pour chacun des algorithmes suivants, spécifier une primitive (action ou fonction) et en

donner une réalisation en appliquant les schémas du cours :
— Longueur de la séquence.
— Rang du premier élément de valeurX donnée, s’il existe (0 sinon). Le rang du premier

élément d’une liste est 1.
— Nombre d’éléments situés après le premier élément de valeur X donnée.
— Prédécesseur d’un élément de valeur X donnée : le résultat est composé d’un booléen

et d’une adresse. Le booléen a la valeur vrai si et seulement si la valeurX appartient à
S ; dans ce cas, l’adresse renvoyée est l’adresse du prédécesseur de la cellule contenant
le premier exemplaire de X dans S. Si le premier élément de S vaut X, l’adresse
renvoyée est Nil.

— Ième élément de la séquence, pour I donné.

E4.12 : Construction d’une liste chaînée (E4.2 suite)
Étant donnée une séquence marquée d’éléments de type quelconque, spécifier et réaliser une
action qui construit une liste chaînée avec ces éléments. Aucun ordre n’est imposé sur les
éléments de la liste créée.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.16

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

E4.13 : Partition d’une séquence
Étant donnés deux entiers X et Y (0 < X < Y) et une séquence d’entiers strictement positifs S,
on étudie un algorithme qui construit trois listes chaînées L1, L2 et L3 : L1 comporte tous les
éléments de S strictement inférieurs à X, L2 tous ceux qui appartiennent à l’intervalle [X. . .Y[
et L3 tous ceux qui sont supérieurs ou égaux à Y. La séquence S, de longueur n (donnée), est
saisie interactivement. On suppose que l’espace mémoire comporte au moins n cellules libres.
Les listes L1, L2 et L3 sont de même type : elles sont gérées à l’aide d’un seul type de cellule.

adCelEnt : type pointeur de CelEnt { adresses de cellules }
CelEnt : type <E : entier, Suc : adCelEnt> { élément et lien vers son successeur }
n : constante de type entier ≥ 0 { taille de la séquence. }

Dans ce qui suit, deux versions d’algorithme sont étudiées. On s’inspirera de l’exemple E4.2
pour les réaliser. Dans la version 1 aucun ordre n’est imposé sur les éléments des listes créées.
Dans la version 2, les éléments des listes créées y sont dans le même ordre que dans la séquence
donnée.

(i) Version 1 : aucun ordre n’est imposé sur les éléments des listes créées.
On spécifie l’action Répartir :

Répartir : action(donnée n : entier > 0, X, Y : entier ;
résultat T1, T2, T3 : adCelEnt)

{ Répartit n entiers lus au clavier dans les trois listes d’adresse de tête T1, T2 et T3, la première
comportant les éléments strictement inférieurs à X, la seconde ceux appartenant à l’intervalle [X. . .Y[et
la dernière ceux supérieurs ou égaux à Y. Pré-condition : X ≤ Y. }

Dans un parcours de la séquence donnée, l’entier courant est placé dans la liste correspondant
à sa valeur. Aucun ordre n’étant imposé, il est ajouté en tête de liste. On introduit ainsi une
action AjouterEnTête.

AjouterEnTête : action
(donnée V : entier ; donnée-résultat T : adCelEnt)
{ e.i. : T = t0 et t0 est l’adresse de tête d’une liste (Nil si la liste est vide) ; e.f. : une cellule a été
allouée et placée dans la liste avant la cellule d’adresse t0 ; elle contient l’élément V ; la valeur de T
est l’adresse de cette cellule. }

On propose l’ébauche suivante pour la réalisation de l’action Répartir :

Répartir (n, X, Y, Tavant, Tdans, Taprès) :
EC : entier { pour la saisie : entier courant }
•••••••••••••••••••• { Création de trois listes vides }
répéter n fois

Lire(EC)
selon EC

EC < X : ••••
EC ≥ Y : ••••
sinon : ••••

Q1
— Compléter la réalisation ci-dessus en utilisant l’action AjouterEnTête.
— On considère les données suivantes : n=6, S = [10, 40, 20, 20, 50, 70], X = 30, Y

= 60. Dessiner les états successifs des listes L1, L2 et L3 (sous forme de schémas faits
de cellules et de flèches) observés au début du corps de l’itération, lors de l’exécution de
l’action.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.17

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

— Donner une réalisation de l’actionAjouterEnTête. Faire un dessin mettant en évidence
les modifications de chaînage.

(ii) Version 2 : dans chaque liste créée, les éléments sont dans l’ordre de la séquence
donnée.
Pour respecter la contrainte d’ordre, l’ajout d’un élément dans une liste doit être effectué en
queue. Ceci nécessite de maintenir l’adresse de queue de chacune des listes créées. Les adresses
de tête et de queue sont gérées dans deux tableaux de trois éléments.
On spécifie une nouvelle action Répartir :

TabadCelEnt : type tableau sur [1. . .3] d’adCelEnt
Répartir : action(donnée n : entier > 0, X, Y : entier ;

résultat T, Q : TabadCelEnt)
{ Répartit n entiers lus au clavier dans les trois listes d’adresse de tête Ti (1≤i≤3) et d’adresse de queue
Qi (1≤i≤3) : la première comporte les éléments strictement inférieurs à X, la seconde ceux appartenant
à l’intervalle [X. . .Y[et la dernière ceux supérieurs ou égaux à Y. Si une liste est vide, son adresse de
tête vaut Nil et son adresse de queue n’est pas pertinente. Pré-condition : X ≤ Y. }

L’ajout d’un élément dans une liste vide doit être traité de manière spécifique. On introduit
ainsi deux actions AjouterEnQueue et CréerListeSingleton et on complète le lexique de
la version 1 de la manière suivante :

CréerListeSingleton : action (donnée X : entier ; résultat T, Q : adCelEnt)
{ e.i. : indifférent ; e.f. : T et Q sont les adresses de tête et de queue d’une liste singleton formée
avec l’élément X. Le champ successeur de cette cellule vaut Nil. }

AjouterEnQueue : action (donnée X : entier ; donnée-résultat Q : adCelEnt)
{ e.i. : Q = q0 et q0 est l’adresse de queue d’une liste non vide ; e.f. : une cellule contenant X a été
ajoutée après q0. Q contient l’adresse de cette cellule. Le champ successeur de cette cellule vaut Nil.
}

Q2
— Illustrer par des dessins les modifications de l’état dans le cas où l’élément courant

appartient à [X. . .Y].
— Réaliser l’action Répartir en utilisant les actions CréerListeSingleton et Ajoute-

rEnQueue.
— Donner une réalisation des actions CréerListeSingleton et AjouterEnQueue. Faire

des dessins mettant en évidence les modifications de chaînage.

(iii) Généralisation
On veut maintenant répartir la séquence donnée en k+1 listes chaînées selon le critère suivant :
k entiers distincts sont donnés en ordre croissant dans un tableau nommé Tab (généralisation
des données X et Y). La première liste contient tous les éléments strictement inférieurs à Tab1,
la k+1ème liste contient tous ceux supérieurs ou égaux à Tabk et pour i appartenant à [2. . .k],
la ième liste contient tous les éléments appartenant à l’intervalle [Tabi−1. . .Tabi[.
Q3 Réaliser l’action de partition dans l’hypothèse où il n’y a pas de contrainte d’ordre sur les
éléments des listes créées (généralisation de la version 1).

E4.14 : Suppression du premier élément de valeur donnée (utilisation d’éléments
fictifs)
On donne une séquence d’entiers sous forme d’une liste chaînée. On étudie la suppression du
premier élément de valeur donnée (dans le sens du chaînage), selon deux représentations de la
liste. On utilise le lexique suivant :

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.18

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

Élément : type
adCel : type pointeur de Cel ; Cel : type <Elt : Entier, Suc : adCel>

(i) Liste chaînée sous forme standard
On spécifie une action de suppression :

SupprimerP : action (donnée X : Entier ; donnée-résultat T : adCel)
{ Supprime le premier élément de valeur X dans la liste chaînée de tête T. S’il n’en existe pas, la liste
est inchangée }

— Dans cette spécification, le deuxième paramètre est défini comme étant de statut
"donnée-résultat". Expliquer pourquoi il ne peut pas être défini comme étant de sta-
tut "donnée".

— Le principe choisi pour la réalisation est d’appliquer un schéma de recherche. On main-
tient le prédécesseur de l’élément courant pour réaliser la déconnexion de la cellule à
supprimer.
Compléter l’ébauche suivante de cette réalisation :

SupprimerP(X, T) :
AC, AP : adCel { adresse courante et adresse du prédécesseur }
si T 6= Nil alors

si T↑.Elt = X alors
••••••••••••• { suppression en tête }

sinon
AP ←− T ; AC ←− AP↑.Suc
tant que AC 6= Nil et puis AC↑.Elt 6= X
•••••••••

si ••• alors
••••••••• { suppression de la cellule d’adresse AC }

(ii) Liste chaînée munie d’un élément fictif de tête
On suppose maintenant que la liste traitée est sous forme chaînée avec élément fictif de tête
comme indiqué au paragraphe 4.A.b)(v).

— On conserve la spécification de l’action SupprimerP. La seule différence est que le
deuxième paramètre est défini avec le statut "donnée" (et non "donnée-résultat"). Ex-
pliquer cette différence.

— Simplifier la réalisation de l’action SupprimerP en tenant compte de l’hypothèse d’une
représentation avec élément fictif de tête.

E4.15 : Concaténation de deux séquences
On étudie la construction d’une liste chaînée L3 de tête T3, concaténation de deux listes
chaînées L1 et L2 données, selon deux hypothèses : création d’une nouvelle liste ou modification
des liens des listes existantes. On utilise le lexique suivant :

Élément : type
adCel : type pointeur de Cel ; Cel : type <Elt : Élément, Suc : adCel>

(i) Création d’une nouvelle liste
On spécifie l’action suivante :

CréerConcat : action (donnée T1, T2 : adCel, résultat T3 : adCel)
{ Construit une liste chaînée d’adresse de tête T3 représentant la concaténation des deux séquences
représentées par les listes données de tête T1 et T2 }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.19

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

La liste résultat est construite en créant les copies des listes L1 et L2 et en connectant le dernier
élément de la première au premier de la seconde. Pour réaliser ces copies, on spécifie une action
nommée CopierListeAprès :

CopierListeAprès : action (donnée T : adCel, donnée-résultat Q : adCel)
{ à l’état initial, Q est l’adresse de queue d’une liste non vide (Q 6= Nil) ; à l’état final, une copie de
la liste d’adresse de tête T a été construite et connectée après la cellule d’adresse Q. Q est l’adresse
du dernier élément de la liste ainsi créée (en particulier si T = Nil, Q est inchangé). }

T

tn

tn

t1

t1

Q

Figure 4.12 – Effet de l’appel à CopierListeApres(T,Q)

— Réaliser l’action CréerConcat en utilisant l’action CopierListeAprès.
Indication : initialiser la liste résultat par un singleton "fictif" de manière à copier L1
après cet élément fictif. L’élément fictif sera supprimé après avoir copié L2.

— Réaliser l’action CopierListeAprès.

(ii) Modification des liens existants
L3 est formée des cellules constituant initialement L1 et L2. A l’état final, L1 et L2 sont vides.
On spécifie l’action suivante :

Concaténer : action (donnée-résultat T1, T2 : adCel, résultat T3 : adCel)
{ e.i. T1 et T2 sont les têtes de deux listes chaînées représentant deux séquences S1 et S2.
e.f. : T1=Nil et T2=Nil et T3 est l’adresse de tête d’une liste chaînée formée des cellules des deux
listes données et représentant la concaténation de S1 et S2 }

— Donner un dessin illustrant les modifications de chaînage nécessitées par la réalisation
de l’action.

— Donner une réalisation de l’action Concaténer.

E4.16 : Intersection de deux ensembles
On considère des ensembles représentés par des listes chaînées, sans répétition d’éléments,
et sans ordre imposé, selon le lexique suivant :

Élément : type
adCel : type pointeur de Cel ; Cel : type <Elt : Élément, Suc : adCel>

(i) Créer une liste contenant l’intersection
On spécifie l’action suivante :

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.20

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

CréerIntersection : action (donnée T1, T2 : adCel, résultat T3 : adCel)
{ Construction d’une liste chaînée d’adresse de tête T3 représentant l’intersection des deux ensembles
représentées par les deux listes données par leurs adresses de tête T1 et T2 }

— Donner une réalisation de l’action CréerIntersection fondée sur le principe suivant :
dans un parcours de la première liste, on recopie tout élément appartenant aussi à la
deuxième liste.

(ii) Séparer l’intersection et la différence
On rappelle qu’étant donné deux ensembles E1 et E2, E1 = (E1 ∩ E2) ∪ (E1\E2).
On spécifie l’action suivante :

SéparerIntersection : action (donnée-résultat T1 : adCel, donnée T2 : adCel,
résultat T3 : adCel)

{ Sà l’état initial, les listes de tête T1 et T2 représentent deux ensembles E1 et E2. A l’état final, la liste
de tête T1 représente l’intersection de E1 et E2, la liste de tête T3 représente la différence entre E1 et
E2 et la liste de tête T2 inchangée représente l’ensemble E2. }

— Donner une réalisation de l’action SéparerIntersection. Appliquer le principe suivant :
pour chaque cellule de la liste T1, si son élément n’appartient pas à la liste T2 (il
appartient alors à la différence), la déconnecter de la liste T1 puis la connecter à la liste
T3.

E4.17 : Union de deux ensembles
Comme pour l’intersection (E4.16), étudier deux versions pour l’opération d’union : création
d’une nouvelle liste ou modification d’une liste donnée.

E4.18 : Suppression des éléments redondants
Un élément est dit redondant, s’il existe dans la séquence un autre élément de même valeur.
Étudier la suppression des éléments redondants d’une liste chaînée, selon les diverses hypothèses
suivantes, que l’on pourra combiner (4 versions possibles) :

— Le résultat est une nouvelle liste chaînée ou, au contraire, la liste initiale est modifiée
de manière à ne plus comporter d’éléments redondants (les cellules non utilisées sont
libérées).

— Dans la liste donnée les éléments sont dans un ordre quelconque, ou au contraire ils sont
en ordre croissant (cas d’un type Élément muni d’une relation d’ordre).

c) Gestion du chaînage dans un tableau mémoire

E4.19 : Gestion du chaînage dans un tableau
Donner les modifications qu’il faut apporter aux lexiques et aux algorithmes des exemples E4.3
"Une liste est-elle en ordre croissant ?" et E4.4 “Inversion d’une liste chaînée”, en utilisant un
tableau pour gérer le chaînage (cf 4.A.d)).

D. Problèmes dirigés
E4.20 : Gestion d’un répertoire téléphonique
On désire gérer un répertoire téléphonique. Chaque élément du répertoire comporte
l’identification de la personne (par son nom) et un numéro de téléphone. On suppose qu’un
seul numéro est associé à une personne donnée, et qu’il n’y a pas deux personnes ayant le
même nom.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.21

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

(i) Représentation par une liste circulaire avec élément fictif
Le répertoire est représenté par une liste chaînée, circulaire, et avec un élément fictif entre le
dernier et le premier élément. Cette liste est accessible par l’adresse de son élément fictif. Le
premier élément de la séquence représentée se trouve dans la cellule d’adresse F↑.Suc où la
variable F contient l’adresse de l’élément fictif de tête. Lorsque la séquence est vide, la liste ne
comporte que l’élément fictif. La figure 4.13 illustre cette représentation.

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

FF

Liste videListe non vide

Figure 4.13 – Représentation chaînée avec fictif, circulaire

On fixe le lexique suivant :

Nom : type séquence de caractère { identifiant de personne }
{ La comparaison de valeurs de type Nom est notée avec les symboles habituels sur les nombres ;
l’affectation d’une variable de type Nom est notée avec le symbole habituel. }

Tél : type entier > 0 { numéro de téléphone }
Élément : type <Pers : Nom ; Num : Tél>
adRep : type pointeur d’ElRep ; ElRep : type <Elt : Élément ; Suc : adRep>

{ La gestion mémoire se fait à l’aide des actions Allouer et Libérer. On supposera que l’espace
mémoire est suffisamment grand pour ne jamais être saturé. }

Pour s’approprier la représentation, on étudie la fonction suivante :

LePred : fonction (N : Nom, F : adRep) −→ adRep
{ Adresse du prédécesseur du doublet de nom N dans la liste F, s’il existe. Sinon, c’est l’adresse du
prédécesseur du fictif : et donc le dernier élément du répertoire s’il n’est pas vide ou le fictif lui-même
si le répertoire est vide. }

Cette fonction sera utilisée par la suite pour réaliser les primitives de gestion du répertoire.

Q1. Donner une réalisation de la fonction LePred.

(ii) Primitives de gestion du répertoire
L’utilisateur du répertoire doit pouvoir installer le répertoire en l’initialisant par un ensemble
vide, ajouter un nouvel élément au répertoire, modifier le numéro associé à une personne,
supprimer un élément du répertoire, consulter le répertoire pour obtenir le numéro de télé-
phone d’une personne et vider le répertoire en le ré-initialisant par un ensemble vide.
"Auto-organisation" de la liste :
À chaque fois que l’utilisateur consulte le répertoire, l’élément de répertoire associé à la personne
considérée est placé en tête de la liste, de telle sorte que les éléments les plus fréquemment
consultés se trouvent automatiquement au début de la liste.
Lorsqu’une nouvelle personne est ajoutée au répertoire, l’élément correspondant est placé en
fin de liste. Lorsqu’un élément est modifié, il n’est pas déplacé dans la liste.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.22

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

Cohérence des requêtes
Lors de la réalisation des primitives, on doit vérifier la cohérence des données : lors d’un ajout,
vérifier que la personne correspondante n’est pas déjà dans le répertoire ; lors d’une modification
ou d’une suppression vérifier que la personne correspondante est dans le répertoire.
Pour spécifier les cas d’erreurs, on introduit le type énuméré suivant :

Cond : type [Normal, NomErroné] { pour valider les données }

Consultation du répertoire
Pour permettre la consultation du répertoire, on spécifie l’action suivante :

Consulter : action (donnée N : Nom, F : adRep ; résultat T : Tél, C : Cond)
{ Consulte le répertoire accessible par F pour connaître le numéro de téléphone associé au nom N. Si
le nom N n’est pas présent dans le répertoire, à l’état final C a la valeur NomErroné et le répertoire
est inchangé. Sinon, C a la valeur Normal, T est le numéro de téléphone associé à N et l’élément de
nom N a été placé en tête du répertoire. }

Q2. Donner une réalisation de l’action Consulter.

Autres primitives de gestion

Installer : action (résultat F : adRep)
{ Construit un répertoire vide et fournit l’adresse du fictif de tête dans F }

Vider : action (donnée F : adRep)
{ Libère toutes les cellules du répertoire donné sauf celle comportant l’élément fictif de tête. A l’état
final, la liste accessible par F représente un répertoire vide. }

Ajouter : action (donnée N : Nom, T : Tél, F : adRep ; résultat C : Cond)
{ Ajoute au répertoire accessible par F, un nouvel élément formé du nom N auquel est associé le
numéro T. À l’état final, si le nom N est déjà présent dans le répertoire, C a la valeur NomErroné et
le répertoire est inchangé ; sinon, C a la valeur Normal, et le nouvel élément a été ajouté en queue
du répertoire. }

Supprimer : action (donnée N : Nom, F : adRep ; résultat C : Cond)
{ Supprime l’élément de nom N dans le répertoire accessible par F. À l’état final, si le nom N n’est
pas présent dans le répertoire, C a la valeur NomErroné et le répertoire est inchangé ; sinon, C a la
valeur Normal, et l’élément de nom N a été supprimé du répertoire. }

Modifier : action (donnée N : Nom, T : Tél, F : adRep ; résultat C : Cond)
{ Modifie dans le répertoire accessible par F, l’élément de nom N en lui associant le numéro T. À
l’état final, si le nom N n’est pas présent dans le répertoire, C a la valeur NomErroné et le répertoire
est inchangé ; sinon, C a la valeur Normal, et le numéro de téléphone T a été associé au nom N dans
le répertoire. }

Q3. Donner une réalisation de chacune des primitives ci-dessus.

E4.21 : A propos de vecteurs creux
On considère des vecteurs de n entiers définis sur l’intervalle [1. . .n] (n > 0). On dit qu’un
vecteur est creux lorsqu’il comporte un très grand nombre d’éléments nuls. Lorsque n est très
grand il est intéressant de représenter le vecteur non pas comme un tableau de n entiers, mais
sous une forme compacte à l’aide d’une séquence ne comportant que les valeurs non nulles du
vecteur : chaque élément de la séquence comporte une valeur non nulle et son indice dans le
vecteur considéré. De plus, la séquence est en ordre croissant des indices.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.23

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

Par exemple, le vecteur défini sur [1. . .10] de valeur [0, 25, 0, 0, 13, 0, 0, 0, 0, -12] a pour forme
compacte la séquence comportant les trois couples correspondant aux trois valeurs non nulles
25, 13 et -12 d’indices 2, 5 et 10 : [<25, 2>, <13,5>, <-12, 10>].
La forme compacte d’un vecteur dont tous les éléments sont nuls est la séquence vide.

(i) Représentation chaînée de la forme compacte d’un vecteur creux
On représente la forme compacte d’un vecteur creux par une liste doublement chaînée, circulaire,
avec un élément fictif : chaque cellule est chaînée à son successeur et à son prédécesseur ; le
prédécesseur de l’élément fictif est le dernier élément de la forme compacte (ou l’élément fictif si
la forme compacte est la séquence vide) ; le successeur de l’élément fictif est le premier élément
de la forme compacte (ou l’élément fictif si la forme compacte est la séquence vide). La liste est
accessible par l’adresse de son élément fictif. Dans ce qui suit, cette adresse est appelée l’adresse
de la forme compacte. Chaque cellule de cette liste comporte ainsi une valeur non nulle, son
indice dans le vecteur et deux liens. La liste est en ordre croissant des indices. Le dessin 4.14
schématise cette représentation dans le cas de l’exemple précédent :

F

?
?

25
2

13
5

-12
10

élément fictif

Figure 4.14 – Représentation doublement chaînée avec fictif, circulaire

(ii) Questions
On étudie ici la réalisation de quelques opérations sur les vecteurs. On exploitera au mieux la
représentation donnée ci-dessus (ordre entre les éléments, double chaînage, présence d’un fictif,
possibilité de sentinelle, etc.).
On utilisera le lexique suivant :

n : constante de type entier > 0 ; Indice : type entier sur [1. . .n]
adFC : type pointeur de FC
FC : type <LaValeur : entier non nul, Lindice : Indice, LeSuc, LePred : adFC>

Q1. Primitives de traitement d’une forme compacte
Réaliser les primitives suivantes :

Ladresse : fonction (F : adFC, i : Indice) −→ adFC
{ Adresse dans la forme compacte d’adresse F de la première cellule d’indice supérieur ou égal à i,
ou F s’il n’en existe pas. }

CréerFCVide : action (résultat F : adFC)
{ Crée une forme compacte vide et fournit son adresse dans F. }

ConnecterAvant : action (donnée C, A : adFC)
{ A étant l’adresse d’une cellule appartenant à une forme compacte, et C l’adresse d’une cellule,
modifie les liens de la forme compacte de manière à insérer C avant A. }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.24

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

Déconnecter : action (donnée A : adFC)
{ A étant l’adresse d’une cellule appartenant à une forme compacte, modifie les liens dans cette forme
compacte de manière à déconnecter A. }

AjouterAvant : action (donnée E : entier non nul, i : Indice, A : adFC)
{ A étant l’adresse d’une cellule appartenant à une forme compacte, crée un nouvel élément de valeur
E et d’indice i et le connecte avant A. }

Supprimer : action (donnée A : adFC)
{ A étant l’adresse d’une cellule appartenant à une forme compacte, déconnecte A et le restitue à la
mémoire. Pré-condition : A n’est pas l’élément fictif. }

Q2. Valeur d’un élément d’indice donné
Réaliser la fonction suivante :

Val : fonction (F : adFC, i : Indice) −→ entier
{ Valeur de l’élément d’indice i du vecteur dont la forme compacte est donnée par l’adresse F }

Par exemple, soit n = 10, et soit FV l’adresse de la forme compacte [<25, 2>, <13, 5>,
<-12,10>]. On a : Val(FV,1) = 0, Val(FV,2) = 25, Val(FV,3) = 0, . . .,Val(FV,5) = 13, . . .,
Val(FV,10) = -12

Q3. Changement de représentation
On étudie les actions permettant de passer d’un vecteur à une forme compacte et réciproque-
ment.

TabVersFC : action (donnée T : tableau sur [1. . .n] d’entier, résultat F : adFC)
{ Construit la forme compacte d’un vecteur donné en extension sous forme d’un tableau }

FCVersTab : action (donnée F : adFC, résultat T : tableau sur [1. . .n] d’entier)
{ Construit le vecteur correspondant à la forme compacte donnée }

Par exemple, si T est un tableau sur [1. . .10] de valeur [0, 25, 0, 0, 13, 0, 0, 0, 0, -12], Tab-
VersFC(T, F) crée la forme compacte correspondante et fournit son adresse dans F ; FC-
VersTab(F, T) fait l’opération inverse.

— Réaliser les deux actions TabVersFC et FCVersTab.

Q4. Changement de la valeur d’un élément d’indice donné
Réaliser l’action suivante :

ChangerVal : action (donnée F : adFC, i : Indice, E : entier)
{ Modifie la forme compacte d’adresse F.
état initial : posons pour i ∈ [1. . .n], Val(F,i) = αi (quelconque, éventuellement 0)
état final : ∀ j ∈ [1. . .n], j 6= i =⇒ Val(F,j) = αj

Val(F,i) = E (E peut être nul) }

Remarque : une cellule qui n’est plus utilisée doit être restituée à la mémoire libre.

Q5. Somme de deux vecteurs
La somme de deux vecteurs V1 et V2 est un vecteur VS défini de la manière suivante :

∀ i ∈ [1. . .n], VSi = V1i + V2i
— Réaliser l’action suivante :

CréerSomme : action (donnée F1, F2 : adFC, résultat F3 : adFC)
{ Construit la forme compacte d’adresse FS du vecteur somme des vecteurs dont les
formes compactes sont données par F1 et F2 }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.25

UGA, UFR IM2AG, Algorithmique, langages et programmation Séquences et Chaînage

— Réaliser l’action suivante :
Accumuler : action (donnée F1, F2 : adFC)

{ état initial : F1 et F2 sont les adresses des formes compactes de deux vecteurs V1
et V2.
état final : F̄1 est l’adresse de la forme compacte du vecteur somme de V1 et V2. La
forme compacte d’adresse F2 a été détruite. }

Remarque : une cellule qui n’est plus utilisée doit être restituée à la mémoire libre. On devra
exploiter au mieux la représentation pour traiter les parcours et recherches sur les listes.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

4.26

UGA, UFR IM2AG, Algorithmique, langages et programmation Définitions récursives

5. Définitions récursives

A. Eléments de cours
a) Notion de définition récursive

La définition d’une entité est récursive lorsqu’elle fait référence à une entité de même nature.
Par exemple, dans le dessin d’une boîte de Vache qui rit, il y a deux boîtes de Vache qui rit.

Pour définir un ensemble de manière constructive récursive, on procède de la manière suivante :
— on définit (en extension, en compréhension) un ensemble d’objets de base ;
— on définit un ensemble de constructeurs (règles de construction) permettant de construire

un objet de l’ensemble à l’aide d’autres objets de l’ensemble.
L’ensemble contient (par définition récursive) les objets de base et tout objet obtenu à l’aide
des constructeurs. Et l’ensemble ne contient que ces objets.

Pour un ensemble donné, il peut y avoir plusieurs manières de le définir récursivement.
Par exemple, l’ensemble N des entiers naturels peuvent être défini récursivement comme suit.
version 1 :

— base : 0 ∈ N
— constructeur : si x ∈ N alors P1(x) ∈ N (où P1(x) a la même signification que x+1)

version 2 :
— base : 0 ∈ N
— constructeurs :

— si x ∈ N alors D0(x) ∈ N (où D0(x) a la même signification que 2x)
— si x ∈ N alors D1(x) ∈ N (où D1(x) a la même signification que 2x+1)

b) Le constructeur séquence

Constructeurs, testeur et sélecteurs

— [] désigne la séquence vide. Le testeur associé est le prédicat EstVide ?.
— S•e désigne la séquence construite en ajoutant l’élément e à droite de la séquence S.

Les sélecteurs associés sont début et dernier.
— e◦S désigne la séquence construite en ajoutant l’élément e à gauche de la séquence S.

Les sélecteurs associés sont premier et fin.
— Une séquence peut être décrite en extension, en énumérant ses éléments séparés par des

virgules, le tout étant entouré de crochets : [e1, e2, . . ., en]. En particulier, [e] dénote
un singleton, séquence formée du seul élément e : [e] = []•e = e◦[].

Elément : type ; Seq : type séquence d’Elément
EstVide ? : (X : Seq) −→ booléen { EstVide ?(X) est vrai ⇐⇒ : (X=[]) }
début : (X : Seq non vide) −→ Seq { début(S•e) = S }
dernier : (X : Seq non vide) −→ Elément { dernier(S•e) = e }
premier : (X : Seq non vide) −→ Elément { premier(e◦S) = e }
fin : (X : Seq non vide) −→ Seq { fin(e◦S) = S }
EstSingleton ? : (X : Seq) −→ booléen { vrai ⇐⇒ non EstVide ?(X) et puis EstVide ?(début(X))

⇐⇒ non EstVide ?(X) et puis EstVide ?(fin(X)). }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

5.1

UGA, UFR IM2AG, Algorithmique, langages et programmation Définitions récursives

Exemples de définitions de types
texte : type séquence de caractère
relevé : type séquence de réel
date : type <j, m, a : entier> ; événement : type <d : date, e : texte>
histoire : type séquence d’événement
lettre : type caractère sur [’a’. . .’z’] ; mot : type séquence de lettre
phrase : type séquence de mot ; paragraphe : type séquence de phrase

Exemples d’expressions de constantes

un texte : " ceci est 1 exemple de texte. Il comporte des lettres, des chiffres, des espaces,
et des séparateurs. "

un relevé : [12.5, 13.2, -2.3]
un mot : "exemple"
une phrase : ["ceci", "est", "une", "phrase"]
un paragraphe : [["voici", "la", "première", "phrase"], ["et", "voici", "la", "seconde"],

["et", "ainsi", "de", "suite"]]
une histoire : [< <20, 9, 1999>, "rentrée à 9 heures" >, < <1, 11, 1999>, "jour férié" >,

< <31, 12, 1999>, "demain l’an 2000" >]

c) Modèles de découpage d’une séquence selon les extrémités

Découpage
isolant . . .

Forme des
équations de
récurrence

Forme des réalisations récur-
sives de f(X)

Variante : sé-
quence non
vide

Le premier
élément

f([]) =
f(e◦S) =

si EstVide ?(X) alors •••
sinon soit e = premier(X), S = fin(X)

dans •••

f([e]) =
f(e ◦S) =
{ S non vide }

Le dernier
élément

f([]) =
f(S•e) =

si EstVide ?(X) alors •••
sinon soit e = dernier(X), S = début(X)

dans •••

f([e]) =
f(S•e) =
{ S non vide }

Le premier
et le

dernier
élément

f([]) =
f([e]) =
f(e1◦S•e2) =

si EstVide ?(X) alors •••
sinon si EstVide ?(fin(X)) alors •••
sinon soit e1 = premier(X),

e2 = dernier(X),
S = début(fin(X))

dans •••

f([e]) =
f([e1,e2]) =
f(e1◦S•e2) =
{ S non vide }

Les deux
premiers
éléments

f([]) =
f([e]) =
f(e1◦e2◦S) =

si EstVide(X) alors •••
sinon si EstVide ?(fin(X)) alors •••
sinon soit e1 = premier(X)

e2 = premier(fin(X))
S = fin(fin(X))

dans •••

f([e]) =
f([e1, e2]) =
f(e1◦e2◦S) =
{ S non vide }

Les deux
derniers
éléments

f([]) =
f([e]) =
f(S•e1•e2) =

si EstVide ?(X) alors •••
sinon si EstVide(début(X)) alors •••
sinon soit e2 = dernier(X)

e1 = dernier(début(X))
S = début(début(X))

dans •••

f([e]) =
f([e1, e2]) =
f(S•e1•e2) =
{ S non vide }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

5.2

UGA, UFR IM2AG, Algorithmique, langages et programmation Définitions récursives

d) Modèles de découpage d’une séquence selon une propriété

non P(e) P(e)

FD

S

Le Debut selon P La Fin selon P

Figure 5.1 – découpage d’une séquence selon une propriété

Découper une séquence donnée S selon une propriété P (Figure 5.1) consiste à identifier le
premier élément de la séquence (de gauche à droite) vérifiant P, nous parlons de l’élément de
séparation (selon P) : S est découpée selon deux sous-séquences D et F (S=D&F), respective-
ment appelées le début de S et la fin de S selon P. Par convention, l’élément de séparation, s’il
existe est le premier élément de la séquence de fin F. Si aucun élément de la séquence donnée
ne vérifie P, F est vide. Si le premier élément de S vérifie P, D est vide. Si S est vide, D et F
le sont aussi.
Pour modéliser un tel découpage, le lexique suivant est utilisé (aux noms près) :

Elément : type
P : fonction (E : Elément) −→ booléen { propriété caractérisant le découpage }
LeDébutSelonP : fonction (X : séquence d’Elément, •••) −→ séquence d’Elément

{ séquence de début de la séquence donnée jusqu’au premier élément (exclu) vérifiant P }
(1) LeDébutSelonP([], •••) = []
(2) LeDébutSelonP(e◦S, •••) = si P(e) alors [] sinon e ◦LeDébutSelonP(S, •••)

LaFinSelonP : fonction (X : séquence d’Elément, •••) −→ séquence d’Elément
{ séquence de fin de la séquence donnée à partir du premier élément (inclus) vérifiant P }

(1) LaFinSelonP([], •••) = []
(2) LaFinSelonP(e◦S, •••) = si P(e) alors e◦S sinon LaFinSelonP(S, •••)

DebEtFinSelonP : fonction (X : séquence d’Elément, •••) −→ séquence d’Elément, séquence d’Elément
{ DebEtFinSelonP(S, •••) = <LeDébutSelonP(S, •••), LaFinSelonP(S, •••)> }

(1) DebEtFinSelonP([], •••) = <[], []>
(2) DebEtFinSelonP(e◦S, •••) =

si P(e) alors <[], e ◦S>
sinon soit <D, F> = DebEtFinSelonP(S, •••) dans < e◦D, F >

B. Exemples d’exercices rédigés
a) Relations de récurrence, réalisation récursive

Exemple E5.1 : Factorielle
Décrire une fonction qui à un entier strictement positif n associe le produit des n premiers
entiers (noté habituellement n !).

fac : fonction (m : entier > 0) −→ entier > 0 { fac(m) = m ! }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

5.3

UGA, UFR IM2AG, Algorithmique, langages et programmation Définitions récursives

(i) Relations de récurrence

(1) fac(1) = 1
(2) fac(n+1) = fac(n) * (n+1) { n > 0 }

(ii) Réalisation récursive

fac(n) :
retour : si n=1 alors 1 sinon fac(n-1) * n

Liste des appels récursifs engendrés
Pour visualiser l’évaluation d’une application de la fonction, on dessine une liste des appels
engendrés comme l’illustre la Figure 5.2.

4 3 2 1

11*22*36*424

fac(3)*4 ? fac(2)*3 ? fac(1)*2 ?

fac(4) ?

Figure 5.2 – liste des appels récursifs engendrés par l’appel fac(4)

Exemple E5.2 : Nombre de ’a’
Décrire une fonction qui dénombre les ’a’ d’un texte.

texte : type séquence de caractère
nba : fonction (X : texte) −→ entier ≥ 0 { nombre de ’a’ du texte donné }

(i) Relations de récurrence

(1) nba([]) = 0 (2) nba(c ◦t) = (si c=’a’ alors 1 sinon 0) + nba(t)

(ii) Réalisation récursive

nba(X) :
retour : si EstVide ?(X) alors 0

sinon (si premier(X)=’a’ alors 1 sinon 0) + nba(fin(X))

(iii) Variante sur l’exemple
On reprend l’exemple en excluant le cas du texte vide dans la spécification.

nba : fonction (X : texte non vide) −→ entier ≥ 0 { nba(X) : nombre de ’a’ de X }
(1’) nba([c]) = (si c = ’a’ alors 1 sinon 0)
(2’) nba(c◦t) = (si c = ’a’ alors 1 sinon 0) + nba(t) { t non vide }

L’équation (2’) diffère de l’équation (2) précédente uniquement par le commentaire qui précise
que le nom local t est un texte non vide. Ceci peut aussi être exprimé de la manière suivante :

(2”) nba(c1◦c2◦t) = (si c1=’a’ alors 1 sinon 0) + nba(c2◦t)

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

5.4

UGA, UFR IM2AG, Algorithmique, langages et programmation Définitions récursives

Dans cette équation, c1 et c2 désignent des caractères et t un texte éventuellement vide. L’appel
récursif nba(c2◦t) porte sur un texte non vide, comme exigé par le profil de la fonction.
La réalisation récursive peut s’écrire :

nba(X) :
retour : (si premier(X)=’a’ alors 1 sinon 0) + (si EstVide ?(fin(X)) alors 0 sinon nba(fin(X)))

b) Découpage d’une séquence selon les extrémités

Exemple E5.3 : Inverse d’une séquence
Décrire une fonction nommée inv qui à une séquence associe son inverse (image miroir). Par
exemple, inv("abcd")="dcba". On convient que l’inverse d’une séquence vide est la séquence
vide.

Elément : type
inv : (X : séquence d’Elément) −→ séquence d’Elément

(i) Découpage à droite

(1) inv([]) = [] (2) inv(S•e) = e◦inv(S)

(ii) Découpage à gauche

(1) inv([]) = [] (2) inv(e◦S) = inv(S)•e

(iii) Découpage aux deux extrémités

(1) inv([]) = [] (2) inv([e]) = [e]
(3) inv(e1◦S•e2) = e2 ◦inv(S) •e1

Exemple E5.4 : Egalité de deux mots
Décrire une fonction à valeur booléenne déterminant si deux mots sont égaux.

lettre : type caractère sur [’a’. . .’z’]
mot : type séquence de lettre
EgMot : fonction (M1, M2 : mot) −→ booléen { vrai ⇐⇒ les mots sont égaux }
(1) EgMot([], []) = vrai
(2) EgMot([], pc ◦MF) = faux
(3) EgMot(pc ◦MF, []) = faux
(4) EgMot(pc1◦MF1, pc2◦MF2) = (pc1=pc2) et puis EgMot(MF1, MF2)

Exemple E5.5 : Une séquence d’entiers est-elle en ordre croissant ?
Décrire une fonction à valeur booléenne déterminant si une séquence non vide d’entiers est en
ordre croissant.

EstCrois : fonction (X : séquence non vide d’entiers) −→ booléen
{ vrai ⇐⇒ X est en ordre croissant. EstCrois([e]) = vrai }

(1) EstCrois([e]) = vrai
(2) EstCrois(e1◦e2◦S) = (e1 ≤ e2) et puis EstCrois(e2 ◦S)

Exemple E5.6 : Nème élément d’une séquence
Décrire une fonction d’extraction du Nème élément d’une séquence.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

5.5

UGA, UFR IM2AG, Algorithmique, langages et programmation Définitions récursives

Nième : (X : séquence non vide d’Elément, m : entier > 0) −→ booléen, Elément
{ Posons <T, E> = Nième(X, m) : s’il existe un élément de rang m dans X (m ≤ longueur(X)), T
a la valeur vrai et E est l’élément de rang m dans X. Sinon, T a la valeur faux et la valeur de E n’est
pas spécifiée (parce que non significative). }

(1) Nième([e], 1) = <vrai, e>
(2) Nième(e◦S, 1) = <vrai, e> { S non vide }
(3) Nième([e], n+1) = <faux, e>
(4) Nième(eoS, n+1) = Nième(S, n)

Remarque : les deux équations (1) et (2) peuvent être regroupées en une seule :

Nième(e◦S, 1) = <vrai, e> { S peut être vide }

c) Regroupement de fonctions intermédiaires

Exemple E5.7 : Nombre d’exemplaires de la valeur maximum d’une
séquence d’entiers
Décrire une fonction qui détermine le nombre d’exemplaires de la valeur maximum d’une
séquence d’entiers.

Nbvmax : fonction (X : séquence d’entier non vide) −→ entier > 0

(i) Version 1 : En première analyse, on introduit deux fonctions, Max, valeur maximum
d’une séquence et NbEx, nombre d’exemplaires d’un élément dans une séquence, ce qui permet
d’écrire :

Nbvmax(X) :
retour : NbEx(Max(X), X)

La fonction NbEx est une généralisation de l’exemple E5.2 ; l’étude de la fonction Max est
traitée dans l’exercice E5.11.

(ii) Regroupement de fonctions intermédiaires
On observe que le processus d’évaluation de la fonction comporte successivement deux phases,
dont la taille dépend de celle de la séquence considérée : l’une pour l’évaluation de Max et
l’autre pour l’évaluation de NbEx. On peut construire une solution dans laquelle les valeurs
des fonctions intermédiaires peuvent être calculées simultanément : on définit une fonction à
valeur couple nommée MaxEtNb, chaque élément du couple correspondant à la valeur d’une
des fonctions intermédiaires.

MaxEtNb : fonction (X : séquence non vide d’entiers) −→ entier, entier >0
{ MaxEtNb(X) = <Max(X), NbEx(Max(X), X)> }

On a alors :

Nbvmax(X) :
retour : soit <m, n> = MaxEtNb(X) dans n

et la fonction MaxEtNb peut être définie par les équations de récurrence suivantes :

(1) MaxEtNb([e]) = <e, 1>
(2) MaxEtNb(S•e) =

soit <m, n> = MaxEtNb(S)
dans selon m, e

m<e : <e, 1>
m=e : <e, 1+n>
m>e : <m, n>

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

5.6

UGA, UFR IM2AG, Algorithmique, langages et programmation Définitions récursives

d) Découpage d’une séquence selon une propriété

On considère des textes formés de lettres et de séparateurs (espaces, signes de ponctuation,
. . .). Dans un texte, les mots sont des suites de lettres délimitées par des séparateurs ou par
les extrémités du texte. Deux mots sont séparés par un ou plusieurs séparateurs. Le texte peut
débuter par une lettre ou par un ou plusieurs séparateurs. De même il peut se terminer par une
lettre ou par un ou plusieurs séparateurs.

lettre, séparateur : type { non précisé ici }
texte : type séquence de caractère { restreint aux lettres et aux séparateurs }
EstLettre : fonction (c : caractère) −→ booléen { vrai ⇐⇒ le caractère est une lettre }
EstSéparateur : fonction (c : caractère) −→ booléen { vrai ⇐⇒ le caractère est un séparateur }
mot : type séquence de lettre

Exemple E5.8 : Premier mot d’un texte
Décrire une fonction qui isole le premier mot d’un texte.

LePremierMot : fonction (X : texte) −→ mot

Pour isoler le premier mot du texte, on compose deux fonctions de découpage définies respec-
tivement selon les propriétés "être une lettre" et "être un séparateur" (cf paragraphe 5.A.d)) :

SansSépAuDébut : fonction (X : texte) −→ texte { la fin du texte selon la propriété "être une lettre" }
LesLettresDuDébut : fonction (X : texte) −→ mot { le début selon la propriété "être un séparateur" }

On en déduit :

LePremierMot(X) :
retour : LesLettresDuDébut(SansSépAuDébut(X))

Les définitions récurrentes des deux fonctions introduites ci-dessus sont déduites des formes
générales des fonctions de découpage en particularisant les propriétés caractérisant les décou-
pages :

(1) SansSépAuDébut([]) = []
(2) SansSépAuDébut(c◦T) = si EstLettre(c) alors c◦T sinon SansSépAuDébut(T)
(3) LesLettresDuDébut([]) = []
(4) LesLettresDuDébut(c◦T) = si EstSéparateur(c) alors [] sinon c◦LesLettresDuDébut(T)

Exemple E5.9 : Les mots d’un texte
Décrire une fonction qui construit la séquence des mots d’un texte.

LesMots : (X : texte) −→ séquence de mot

L’idée est d’isoler le premier mot du texte puis d’appliquer récursivement la fonction LesMots
à ce qui suit le premier mot dans le texte donné.
On réutilise la fonction SansSépAuDébut de l’exemple E5.8 et on introduit une fonction qui
découpe un texte en deux parties, ses lettres du début et ce qui reste :

LettresDébutEtReste : fonction (X : texte) −→ mot, texte
{ Posons <LD, R> = LettresDébutEtReste(X) : LD est le début du texte selon la propriété "être un
séparateur" et R est la fin du texte selon la même propriété. }

LesMots(X) :
retour : soit <LD, R> = LettresDébutEtReste(SansSépAuDébut(X))

dans si EstVide ?(LD) alors[] sinon LD◦LesMots(R)

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

5.7

UGA, UFR IM2AG, Algorithmique, langages et programmation Définitions récursives

(1) LettresDébutEtReste([]) = <[], []>
(2) LettresDébutEtReste(c◦T) =

si EstSéparateur(c) alors <[], c◦T>
sinon soit <LD, R> = LettresDébutEtReste(T) dans < c◦LD, R>

e) Fonctions dont l’évaluation engendre plus d’un appel récursif

Exemple E5.10 : Marelle
On considère un chemin pavé. Les pavés y sont numérotés à partir de 0, séquentiellement dans
le sens du chemin en commençant par le premier pavé. Pour se déplacer sur le chemin, on
avance d’un pavé à l’autre selon l’une des deux règles suivantes : (1) passer du pavé courant au
suivant ou (2) sauter le prochain pavé.
On étudie ici deux questions : dénombrer les chemins partant du pavé 0 et arrivant au pavé n ;
énumérer tous ces chemins. Dans les deux cas, on s’appuie l’étude suivante de l’ensemble des
chemins : pour atteindre le pavé n+2, on ne peut que provenir du pavé n+1 en appliquant la
règle (1), ou du pavé n en appliquant la règle (2). On divise ainsi l’ensemble des chemins arrivant
au pavé n+2 en deux sous-ensembles disjoints : les chemins passant par le pavé n+1 et les
chemins ne passant pas par le pavé n+1. Tout chemin passant par le pavé n+1 est construit à
partir d’un chemin arrivant au pavé n+1 et du déplacement élémentaire n+1 −→ n+2. Tout
chemin ne passant pas par le pavé n+1 est construit à partir d’un chemin arrivant en n et du
déplacement élémentaire n −→ n+2.

(i) Nombre de chemins

NbC : fonction (m : entier > 0) −→ entier > 0
{ Nombre de chemins conduisant au pavé m }

Une première solution
Le principe d’analyse présenté ci-dessus permet d’affirmer que pour n>0, NbC(n+2) =
NbC(n+1) + NbC(n). Par ailleurs, il n’y a qu’un chemin pour atteindre le pavé 1 et il
y a deux chemins pour atteindre le pavé 2. La définition récurrente de la fonction NbC est
ainsi :

(1) NbC(1) = 1 (2) NbC(2) = 2 (3) NbC(n+2) = NbC(n+1) + NbC(n)

et sa réalisation récursive est :

NbC(m) :
retour : si m ≤ 2 alors m sinon Nbc(m-1) + NbC(m-2)

Arbre des appels récursifs engendrés
Pour visualiser l’évaluation d’un appel de la fonction, par exemple NbC(6), on dessine main-
tenant un arbre des appels de NbC (Figure 5.3) : chaque noeud est étiqueté par une valeur
d’argument à laquelle NbC est appliquée. La racine de l’arbre correspond à l’appel externe
initial. Les autres noeuds correspondent aux appels récursifs engendrés par l’appel initial.

Une transformation
Le schéma ci-dessus met en évidence la redondance de calcul impliquée par cette forme de la
fonction. Pour l’éviter, on introduit une fonction intermédiaire, soit g, calculant simultanément
deux valeurs successives de la fonction NbC. La fonction g est définie en termes de NbC par :

g : fonction (x : entier > 0) −→ entier > 0, entier > 0 { g(x) = < NbC(x), NbC(x+1) > }

Ceci permet de réaliser NbC :

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

5.8

UGA, UFR IM2AG, Algorithmique, langages et programmation Définitions récursives

4 3

2 23

2 1

1

4

3 2

12

5

6

Figure 5.3 – Arbre des appels de NbC(6)

NbC(x) :
retour : soit <a, b>=g(x) dans a

La définition récurrente de g découle de celle de NbC :

(1) g(1) = <NbC(1), NbC(2)> = <1, 2>
(2) g(n+1) = soit <x, y>= g(n) dans <y, x + y> { n>0 }

En effet :

g(n+1) = <NbC(n+1), NbC(n+2)>
= <NbC(n+1), NbC(n)+NbC(n+1)>
= soit x= NbC(n), y=NbC(n+1) dans <y, x+y>
= soit <x, y>= g(n) dans <y, x + y>

(ii) Enumération des chemins possibles.

Un chemin est caractérisé par une suite de numéros de case sur la marelle. L’ensemble des
chemins est représenté par une séquence de chemins.
Les chemins conduisant au pavé n+2 (pour n >0) sont obtenus en ajoutant le pavé n+2 d’une
part à tous les chemins conduisant au pavé n et d’autre part à tous les chemins conduisant au
pavé n+1. Pour exprimer ce principe, on introduit une fonction PlusD qui ajoute un numéro
de case à droite de tous les chemins d’un ensemble donné.

Chemin : type séquence non vide d’entier > 0
LesCh : fonction (m : entier > 0) −→ séquence de Chemin

{ Ensemble des chemins conduisant au pavé m }
PlusD : fonction (SC : séquence non vide de Chemin, n : entier > 0) −→ séquence non vide de Chemin

{ Ajoute n à droite de tous les chemins de SC }

(1) PlusD([Ch], n) = [Ch•n]
(2) PlusD(Ch◦SC, n) =(Ch•n)◦PlusD(SC, n) { SC non vide }
(3) LesCh(1) = [[1]]
(4) LesCh(2) = [[1,2], [2]]
(5) LesCh(n+2) = PlusD(LesCh(n+1)&LesCh(n),n+2)

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

5.9

UGA, UFR IM2AG, Algorithmique, langages et programmation Définitions récursives

C. Exercices
a) Analyse récurrente, réalisation récursive d’une fonction

E5.11 : Maximum de n valeurs
Soit les fonctions Max2V et MaxNv spécifiées comme suit :

Max2v : fonction (n1, n2 : entier) −→ entier { maximum des deux entiers }
MaxNv : fonction (X : séquence non vide d’entier) −→ entier { maximum des entiers donnés }

(i) Recherche de propriétés
Compléter les relations suivantes en utilisant Max2v et en respectant les indications :

(1) MaxNv([e]) = •••
(2) MaxNv(e◦S) = Max2v(•••) { S non vide. En se ramenant au maximum de S }
(3) MaxNv(S•e) = Max2v(•••) { S non vide. En se ramenant au maximum de S }
(4) MaxNv(e1◦e2◦S) = MaxNv(•••) { En utilisant le maximum de e1 et e2 }

(ii) Définition récurrente, réalisation récursive, observation de l’évaluation
En combinant l’équation 1 avec chacune des équations 2 à 4, on obtient trois formes de définition
récurrente de la fonction MaxNv.

— A chacune de ces formes, correspond une réalisation récursive de la fonction : donner ces
trois réalisations en les nommant respectivement MaxNv12, MaxNv13, MaxNv14
(les suffixes correspondant aux numéros d’équations composant la définition récurrente).

— Choisir une séquence de 5 entiers nommée X : en raisonnant sur la liste des appels
récursifs, comparer le processus d’évaluation du maximum de X selon la version utilisée.

E5.12 : Une séquence d’entiers est-elle de longueur impaire ?
On spécifie la fonction suivante :

LgImp : fonction (X : séquence d’entier) −→ booléen
{ vrai ⇐⇒ X est de longueur impaire }

(i) Solutions directes
Compléter les équations de récurrence suivantes puis en déduire plusieurs définitions récurrentes
de la fonction LgImp :

(1) LgImp([]) = ••• (2) LgImp([e]) = •••
(3) LgImp(e◦S) = ••• (4) LgImp(e1◦e2◦S) = •••

(ii) Fonctions mutuellement récursives
Une séquence est de longueur impaire si et seulement si la séquence obtenue en enlevant le
premier élément est de longueur paire. Pour appliquer ce principe on introduit la fonction LgP :

LgP : fonction (X : séquence d’entier) −→ booléen
{ vrai ⇐⇒ X est de longueur paire }

En appliquant le principe ci-dessus, donner des équations de récurrence définissant chacune
des deux fonctions LgImp et LgP.

E5.13 : Appartenance
Soit la fonction ApE spécifiée comme suit :

texte : type séquence de caractère
ApE : fonction (X : texte) −→ booléen { vrai ⇐⇒ X comporte au moins un ’E’ }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

5.10

UGA, UFR IM2AG, Algorithmique, langages et programmation Définitions récursives

— Compléter la définition récurrente suivante de la fonction ApE, avec une expression
conditionnelle puis en utilisant des opérateurs logiques :

(1) ApE ([]) = faux (2) ApE (c◦T) = •••

— Donner la réalisation récursive correspondante, sans utiliser d’expression conditionnelle.
— Généraliser à un caractère quelconque, puis à une séquence de type quelconque.

E5.14 : Suppression des espaces
(i) Étudier une fonction SansEspace qui à un texte donné associe le texte qui en est issu en
enlevant tous les espaces, les autres caractères restant dans le même ordre.

(ii) Étudier une fonction SansEspaceAuDébut qui à un texte donné associe le texte qui en est
issu en enlevant les espaces du début (ceux situés avant le premier caractère autre qu’un espace).

(iii) Généraliser à la suppression d’un caractère quelconque.

E5.15 : Plus de ’A’ que de ’E’
On étudie la fonction suivante :

PlusDeAE : fonction (t : texte) −→ booléen
{ vrai ⇐⇒ le texte t comporte plus de ’A’ que de ’E’ (au sens strict). PlusDeAE([])=faux. }

(i) Étudier chacune des trois solutions suivantes : réaliser la fonction PlusDeAE en termes de
la fonction supplémentaire suggérée, puis donner des équations de récurrence définissant cette
fonction et la réalisation récursive correspondante.

— version 1 : avec une fonction nommée NbEx, déterminant le nombre d’exemplaires d’une
lettre dans un texte.

— version 2 : avec une fonction nommée NbAE, spécifiée comme suit :
NbAE : fonction (t : texte) −→ entier ≥ 0, entier ≥ 0

{ posons <na, ne> = NbAE(t) : na est le nombre de ’A’ et ne est le nombre de ’E’ de t. }
— version 3 : avec une fonction nommée DifAE, spécifiée comme suit :

DifAE : fonction (t : texte) −→ entier { différence entre le nombre de ’A’ et le nombre de ’E’ du texte }
(ii) Reprendre la version 3 précédente, en généralisant le problème à deux lettres quelconques :

PlusDe : fonction (c1, c2 : caractère, t : texte) −→ booléen
{ vrai ⇐⇒ le texte t comporte plus d’exemplaires du caractère c1 que d’exemplaires du caractère
c2. }

E5.16 : Palindromes
Une séquence est un palindrome si et seulement si elle est égale à son inverse. Étudier une
fonction booléenne qui caractérise un texte palindrome, en supposant qu’il est formé de lettres
et d’espaces : tout d’abord en tenant compte des espaces, puis sans tenir compte des espaces.

E5.17 : Valeur la plus proche
Décrire une fonction qui étant donné un entier X, détermine la valeur la plus proche
de X dans une séquence d’entiers. Par exemple, dans la séquence [3, -1, 5, 5, 12], la valeur
la plus proche de 6 est 5, la valeur la plus proche de 10 est 12, la valeur la plus proche de 3 est 3.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

5.11

UGA, UFR IM2AG, Algorithmique, langages et programmation Définitions récursives

E5.18 : Valeurs cumulées
On étudie une fonction nommée ValCum construisant la séquence des valeurs cumulées d’une
séquence d’entiers : le ième élément de la séquence résultat est la somme des i premiers éléments
de la séquence donnée. Par exemple, la séquence des valeurs cumulées de la séquence [1, 2, 3,
4, 5] est [1, 3, 6, 10, 15]. Traiter cette étude selon les indications suivantes :

(i) Étudier une première version selon le principe suivant : fonder l’analyse récurrente sur un
découpage à droite et utiliser une fonction Somme (calcul de la somme d’une séquence d’entiers).

(ii) On considère une application de la fonction ValCum à une séquence S de longueur n :
exprimer en fonction de n le nombre d’applications de l’opération binaire + engendrées par
ValCum(S).

(iii) Étudier une deuxième version, toujours fondée sur un découpage à droite, mais n’utilisant
pas la fonction Somme. Comme en (ii), évaluer le nombre d’additions.

(iv) Étudier d’autres versions en exploitant les découpages suivants : premier élément et fin
de la séquence ; deux premiers éléments et reste de la séquence.

E5.19 : Concaténation de deux séquences
On étudie ici la concaténation de deux séquences (opérateur dénoté par le symbole &) en
cherchant à la décrire en termes des constructeurs de base sur les séquences ([], ◦ et •). On veut
donner plusieurs solutions, en faisant varier le mode de découpage choisi des séquences données
pour faire apparaître la récurrence.

Elément : type ; Concat : fonction (X1, X2 : séquence d’Elément) −→ séquence d’Elément

(i) Propriétés de la fonction Concat
On étudie les propriétés de la fonction, par exemple Concat(S1,e◦S2) = Concat(S1•e,S2). Com-
pléter les équations suivantes en les examinant indépendamment les unes des autres :

(1) Concat([], []) = ••••• (5) Concat(S1•e, S2) = •••••
(2) Concat([], S) = ••••• (6) Concat(e◦S1, S2) = •••••
(3) Concat(S, []) = ••••• (7) Concat(S1, S2•e) = •••••
(4) Concat(S1, e◦S2) = ••••• (8) Concat(e1◦S1, S2•e2) = •••••

(ii) Equations de récurrence définissant la fonction Concat
Observer que si l’on combine les équations 3 et 4 on peut obtenir une première solution de
définition récurrente de la fonction Concat.

— Expliquer pourquoi la combinaison des équations 3 et 5 fournit une solution incorrecte.
— Expliquer pourquoi la combinaison des équations 3 et 8 fournit une solution incorrecte.
— Donner diverses définitions récurrentes de la fonction en combinant les propriétés ci-

dessus.

E5.20 : Interclassement de deux séquences triées
L’interclassement de deux séquences triées X1 et X2 est une séquence triée X3 comportant tous
les éléments de X1 et de X2. Par exemple, si X1= [1, 1, 3, 11, 11, 25] et X2 = [7, 9, 9, 11, 14,
25, 38] alors X3 = [1, 1, 3, 7, 9, 9, 11, 11, 11, 14, 25, 25, 38].

InterClas : fonction (X1, X2 : séquence d’entier en ordre croissant) −→ séquence d’entier en ordre croissant

— Compléter l’équation suivante traduisant une propriété générale de la fonction InterClas
dans le cas de deux séquences triées non vides :

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

5.12

UGA, UFR IM2AG, Algorithmique, langages et programmation Définitions récursives

InterClas(e1◦S1, e2◦S2) = selon e1, e2
e1 < e2 : ••••••
e1 = e2 : ••••••
e1 > e2 : ••••••

— En déduire une définition récurrente de la fonction InterClas.

E5.21 : A propos de préfixes
Une séquence P est un préfixe d’une séquence S si et seulement si il existe S1 telle que S=P&S1.
La séquence vide est préfixe de toute séquence ; toute séquence est préfixe d’elle-même.
(i) Étudier une fonction booléenne nommée EstPréf portant sur deux séquences d’entiers et
ayant la valeur vrai lorsque la première est un préfixe de la seconde.
(ii) Étudier une fonction LesPréfixes qui construit une séquence formée de tous les préfixes
d’une séquence d’entiers. Indication : raisonner sur un découpage à droite de la séquence
donnée.

E5.22 : Relation d’ordre alphabétique sur des mots.
On étudie une fonction booléenne nommée InfMot correspondant à la relation "inférieur
(strict)" selon l’ordre alphabétique sur des mots. Si un mot M1 est le préfixe d’un mot M2,
InfMot(M1, M2) a la valeur vrai. En s’appuyant sur l’analyse de l’exemple E5.4 donner
des équations de récurrence définissant InfMot. On supposera que l’on dispose d’opérations
primitives permettant de comparer deux caractères selon l’ordre alphabétique, dénotées par
les symboles utilisés pour les nombres.

E5.23 : Plus grand commun diviseur
On étudie une fonction pgcd déterminant le plus grand commun diviseur de deux entiers natu-
rels. Cette fonction vérifie les relations suivantes :

(1) pgcd(a, a) = a
(2) pour a > b : pgcd(a, b) = pgcd(a - b, b)
(3) pour a < b : pgcd(a, b) = pgcd(a, b - a)

— Donner une réalisation récursive de la fonction en exploitant ces relations.
— Le pgcd de deux entiers positifs vérifie aussi la propriété suivante :

(4) pgcd(a, b) = pgcd(b, r) avec a = b*q + r et 0 ≤ r < b
Donner une autre réalisation de la fonction exploitant cette propriété.

E5.24 : Arithmétique sur les entiers naturels

— Donner des relations de récurrence définissant les opérations somme et produit. Pour
chaque opération, donner deux versions en utilisant successivement les deux modèles
d’analyse récurrente définis sur le type entier naturel.

— Pour chacune des deux versions de la fonction produit, dessiner la liste des appels récur-
sifs engendrés par l’évaluation de l’expression produit(3, 17). Dénombrer ces appels et
conclure en comparant les versions.

— Étudier d’autres opérations sur les entiers, par exemple l’élévation à la puissance.

E5.25 : Anagrammes
Deux mots sont des anagrammes l’un de l’autre, s’ils comportent exactement les mêmes lettres,
éventuellement dans un ordre différent. Par exemple, SEL et LES sont des anagrammes, de

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

5.13

UGA, UFR IM2AG, Algorithmique, langages et programmation Définitions récursives

même que ANIS et SAIN, ARBRE et BARRE, ECRAN et NACRE, ARSENELUPIN et PAUL-
SERNINE et LUISPERENNA. . .Par contre LASSE et SALLE ne sont pas des anagrammes.
Tout mot est anagramme de lui-même.
On étudie une fonction à valeur booléenne, nommée EstAna, qui détermine s’il est vrai que
deux mots donnés sont des anagrammes. Une solution est fondée sur le principe suivant :
chaque lettre du premier mot doit appartenir au second et le second mot ne doit pas comporter
d’autres lettres que celles du premier.

(i) Une première version
— Spécifier deux fonctions intermédiaires, l’une nommée Ap d’appartenance d’une lettre à

un mot et l’autre nommée Moins de suppression d’une lettre dans un mot.
— Donner des équations de récurrence définissant la fonction EstAna en termes de ces

fonctions, puis donner des équations définissant chacune d’entre elles.

(ii) Regroupement des fonctions intermédiaires
En s’inspirant de l’exemple E5.7, donner une deuxième version de la fonction EstAna, obtenue
en regroupant les deux fonctions Ap et Moins en une seule nommée ApMoins.

E5.26 : Nombre de "le"
Étudier une fonction qui à un texte associe le nombre d’exemplaires du sous-texte "le"
qu’il comporte. Par exemple,le texte "elle appelle le vieil employé de l’hôtel" comporte trois
exemplaires de "le". Généraliser à n’importe quel couple de lettres.

E5.27 : A propos de mots dans un texte
On considère des textes formés de lettres et d’espaces. Dans un tel texte, un mot est une
sous-séquence de lettres délimitée par des espaces ou par les extrémités du texte. Le texte peut
commencer ou se terminer un ou plusieurs espaces. Mais il peut aussi commencer ou se terminer
par une lettre. Deux mots sont séparés par un ou plusieurs espaces.
Étudier les fonctions suivantes : nombre de mots ; longueur moyenne des mots du texte ;
nombre de mots terminés par la lettre ’s’ ; séquence des premières lettres des mots du texte.

b) Opérations génériques sur les séquences

Les exercices qui suivent traitent de fonctions dont la définition est liée à la structure de séquence
et ne dépend pas du type des éléments des séquence considérée.
E5.28 : Découpage selon le rang d’un élément (E5.6 suite)
Étudier les fonctions suivantes :

— Extraction des X premiers éléments.
— Rang d’un élément donné dans une séquence
— Milieu : L désignant la longueur d’une séquence non vide, son milieu est défini comme

étant l’élément de rang (L+1) quotient 2 (en numérotant les éléments de gauche à droite
à partir de 1). Donner une solution "directe" (sans utiliser de fonction intermédiaire).

E5.29 : Opérations ensemblistes
On étudie l’opération d’appartenance d’un élément à un ensemble et les opérations d’intersec-
tion, d’union et de différence de deux ensembles.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

5.14

UGA, UFR IM2AG, Algorithmique, langages et programmation Définitions récursives

(i) cas général
Les ensembles considérés (données et résultats) sont représentés par des séquences sans répéti-
tions. Décrire les quatre opérations.
(ii) cas d’un type ordonné
Les ensembles considérés sont munis d’une relation d’ordre. Les opérations de comparaison
associées à cet ordre sont notées par les symboles habituels utilisés pour les nombres.
Données et résultats sont représentés par des séquences (sans répétitions) en ordre croissant.
Décrire les quatre opérations ensemblistes. Pour les opérations binaires, travailler par analogie
avec l’exercice E5.20.

E5.30 : Sous-séquences d’une séquence
Étant donnée une séquence S, une sous-séquence de S est une séquence obtenue à partir de
S en enlevant un nombre quelconque d’éléments de S et en conservant l’ordre initial dans S
pour les éléments restants. Nous dirons qu’une sous-séquence de S est connexe, si tous ses
éléments sont adjacents dans S. Par exemple, soit S= [23, 41, -5, 18, 23, 0] : [23, -5, 23] est une
sous-séquence de S (non connexe) ; [41] et [18, 23] sont des sous-séquences de S (connexes) ;
[-5, 41] n’est pas une sous-séquence de S (l’ordre initial n’est pas respecté). Toute séquence S
est une sous-séquence d’elle-même. On peut considérer que la séquence vide est sous-séquence
de n’importe quelle séquence.

— Étudier une fonction booléenne nommée EstSS, qui détermine si une séquence donnée X
est sous-séquence d’une séquence donnée Y.

— Étudier une fonction booléenne nommée EstSSC, qui détermine si une séquence donnée
X est sous-séquence connexe d’une séquence donnée Y.

E5.31 : Partition des éléments d’une séquence
Étudier une fonction nommée PartitionP qui à une séquence X associe une séquence comportant
tous les éléments de X répartis selon un critère donné P, en regroupant au début les éléments
ne vérifiant pas P et à la fin ceux vérifiant P.
On s’appuie sur le lexique suivant :

Elément : type
P : fonction (E : Elément) −→ booléen { critère de partition }
PartitionP : fonction (X : séquence d’Elément) −→ séquence d’Elément

c) Application des schémas de découpage selon une propriété

E5.32 : Plus petite valeur supérieure à un entier donné
Étant donnée une séquence d’entiers en ordre croissant, on veut déterminer la plus petite
valeur de cette séquence strictement supérieure à un entier donné. Étudier une fonction cor-
respondant à ce problème en l’analysant en termes de schémas de découpage selon une propriété.

E5.33 : Eléments d’un intervalle d’entiers
On considère une séquence d’entiers S en ordre croissant et deux entiers X et Y (X ≤ Y). Décrire
une fonction qui construit la sous-séquence des éléments de S appartenant à l’intervalle [X...Y].

SéqEntCrois : type séquence d’entier en ordre croissant
ElInt : fonction (S : SéqEntCrois, X, Y : entier) −→ SéqEntCrois

{ Séquence des éléments de S appartenant à [X, Y]. X ≤ Y }

Étudier une solution basée sur la composition de fonctions de découpage selon une propriété.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

5.15

UGA, UFR IM2AG, Algorithmique, langages et programmation Définitions récursives

d) Séquences de séquences

E5.34 : Plan de ville
On considère un plan quadrillé d’une ville (Figure 5.4). L’origine des axes figure l’entrée Sud-
Ouest de la ville. Un piéton situé à l’origine cherche à atteindre un point P par le plus court
chemin. Il se donne pour cela deux règles de déplacement : avancer d’un bloc au Nord ou d’un
bloc à l’Est.

o

Nord

Est

P

Figure 5.4 – Plan de ville

— Étudier une fonction nommée NbC, dénombrant les chemins permettant d’atteindre un
point P en appliquant les règles ci-dessus : donner une solution fondée sur une analyse
récurrente.

— Étudier une fonction nommée LesCh énumérant tous les chemins possibles.

Indications : décrire un chemin par une séquence de mouvements, un mouvement étant
décrit par un type énuméré à deux valeurs notées Nord et Est. Introduire une fonction
nommée PlusD qui étant donnés une séquence de chemins et un mouvement, ajoute ce mouve-
ment à droite de tous les chemins de la séquence donnée. On peut s’inspirer de l’exemple E5.10.

E5.35 : Le compte est bon
On étudie une forme simplifiée du jeu "le compte est bon". Étant donné un entier X strictement
positif et une séquence non vide E d’entiers strictement positifs, on cherche à exprimer X comme
une somme d’éléments de E. Par exemple, pour X=20 et E=[18, 3, 1, 4, 20], on a une solution,
X=20 ; pour X =25 et E =[21, 3, 2, 4, 2], on a deux solutions X = 21 + 4 et X = 21 + 2 + 2.
Pour X et E donnés, il peut ne pas y avoir de solution. Pour X=23 et E = [21, 3, 2, 4, 2], on
considère qu’il y a deux solutions, une pour chaque occurrence de 2 dans E.
Pour chacune des quatre fonctions suivantes, fournir une réalisation (n’utilisant pas les autres) :

1. ExisteSol détermine s’il existe une solution.

2. NbSol détermine le nombre de solutions.

3. UneSol produit une séquence d’éléments de E dont la somme est X. Le résultat est une
séquence vide s’il n’y a pas de solution.

4. LesSol produit toutes les solutions sous forme d’une séquence. Chaque solution est elle-
même une séquence d’entiers de E de somme X. Le résultat est la séquence vide s’il n’y
a pas de solution.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

5.16

UGA, UFR IM2AG, Algorithmique, langages et programmation Définitions récursives

D. Problèmes dirigés
E5.36 : Quelques principes de tri
On étudie une fonction PO (Permutation ordonnée) :

ElemOrd : type ordonné { muni des opérations de comparaison habituelles }
PermOrd : fonction (S : séquence d’ElemOrd) −→ séquence triée d’ElemOrd

Étudier différentes réalisations de la fonction PermOrd selon les principes suivants :
— Tri par insertion : la fin de S est triée, puis son premier élément est inséré dans le résultat

à la bonne place.
— Tri par sélection du minimum : M étant la valeur minimum de S, la séquence obtenue

en enlevant M de S est triée, puis M est placé en tête du résultat.
— Tri par interclassement : S est découpée en deux parties de taille égale (à 1 près),

chacune de ces deux parties est triée et enfin les séquences obtenues sont interclassées
(voir E5.20).

— Tri par partition ("quick sort") : S est découpée en trois parties p, D et F : p est le
premier élément de S ; D est une séquence constituée des autres éléments de S inférieurs
ou égaux à p ; F est constituée des éléments de S strictement supérieurs à p. Par exemple,
pour S= [7, 5, 25, 3, 7, 15, 4, 20], on peut considérer le découpage suivant : p=7, D= [5,
3, 7, 4], F= [25, 15, 20].
La permutation ordonnée de S est alors obtenue en concaténant la permutation ordonnée
de D, le singleton formé de l’élément p et la permutation ordonnée de F.

E5.37 : Polynômes
On considère des polynômes en x, par exemple -3x4 + 2x2 + 10x -12. Un polynôme est une
suite de monômes. Un monôme, par exemple -34x4, est caractérisé par un coefficient, -34, et la
puissance de x, 4. Un polynôme est représenté par une séquence de monômes à coefficients non
nuls en ordre décroissant des puissances ; un monôme est représenté par un couple <coefficient,
puissance> :

monôme : type <c : entier 6= 0, p : entier ≥ 0 >
polynôme : type séquence de monôme { en ordre décroissant des puissances de x }

Par exemple, au polynôme -34x4 + 2x2 + 10x -12 correspond la séquence [<-34, 4>, <2, 2>,
<10, 1>, <-12, 0>]
Dans cette représentation, les monômes à coefficient nul ne sont pas représentés. C’est un
invariant de la représentation, qui doit constamment être respecté. En particulier, le polynôme
0 est représenté par une séquence vide.
Q1. Étudier une fonction, nommée DérivP, qui étant donné un polynôme, lui associe le polynôme
dérivée par rapport à x. Par exemple, la séquence représentant le polynôme dérivée du polynôme
ci-dessus est [<-136, 3>, <4, 1>, <10, 0>].

Q2. Étudier une fonction, nommée SommeP, qui étant donnés deux polynômes, leur associe le
polynôme somme. Par exemple, la somme des polynômes -34x4 + 2x2 + 10x -12 et 3x5 + 4x4
- 2x2 est 3x5 - 30x4 + 10x -12. On tiendra compte du fait que les séquences représentant les
polynômes sont en ordre décroissant des puissances.

E5.38 : Gestion d’un ensemble d’événements historiques
On considère des événements historiques. La description d’un tel événement comporte :

— Un nom, séquence de caractères, qui caractérise l’événement : deux événements différents
ont des noms différents.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

5.17

UGA, UFR IM2AG, Algorithmique, langages et programmation Définitions récursives

— La date à laquelle l’événement a eu lieu, sous forme d’un triplet d’entiers correspondant
au jour, au mois, et à l’année.

(i) Lexique
Dans ce qui suit, un ensemble d’événements historiques est représenté sous forme d’une séquence
d’événements en ordre chronologique. Lorsque deux (ou plus) événements ont lieu à la même
date, aucun ordre particulier n’est imposé entre eux dans la séquence. On fixe ainsi le lexique
suivant :

jm : type entier sur [1. . .31] { quantième d’un jour dans le mois }
ma : type entier sur [1. . .12] { quantième d’un mois dans l’année }
an : type entier > 0 { quantième de l’année dans le calendrier }
Date : type <jour : jm, mois : ma, année : an>
NomEv : type séquence non vide de caractère
EvHist : type <Nom : NomEv, Moment : Date>
EnsEvHist : type séquence d’EvHist

{ séquence d’événements historiques en ordre chronologique. En cas d’égalité de dates, aucun ordre
particulier n’est spécifié }

(ii) Questions

Q1. Étudier une fonction qui étant donné un ensemble d’événements, permet d’obtenir la date
à laquelle a eu lieu un événement de nom donné. Le résultat de la fonction est un couple formé
d’une part d’un booléen qui indique si l’événement considéré fait bien partie de l’ensemble
d’événements considéré et d’autre part de la date cherchée, le cas échéant.

Q2. Étudier une fonction d’ajout d’un nouvel événement à un ensemble d’événements. On sait
a priori que l’ensemble considéré ne comporte pas déjà cet événement.

Q3. Étudier une fonction de suppression d’un événement d’un ensemble d’événements. On sait
a priori que l’ensemble considéré comporte cet événement.

Q4. Étudier une fonction d’extraction de tous les noms d’événements ayant eu lieu une année
donnée parmi un ensemble d’événements.

E5.39 : Somme d’une suite de nombres
On considère des textes constitués de chiffres et d’espaces. Un nombre est une suite non vide
de chiffres décimaux (’0’, ’1’, . . ., ’9’) délimitée par des espaces ou par les extrémités du texte.
Le texte peut commencer ou se terminer par un chiffre. Mais il peut aussi commencer ou se
terminer par un ou plusieurs espaces. Deux nombres sont séparés par un ou plusieurs espaces.
Chaque nombre est la représentation d’un entier en base 10 et le texte représente une suite
d’entiers.
Étant donné un tel texte, on veut déterminer la somme des entiers qu’il représente. Par exemple,
pour le texte " 343 47 50 36 ", l’entier résultat est 476.

(i) Principe de résolution
On décide de procéder en plusieurs étapes :

— étape 1 : obtention d’une séquence de nombres SN à partir des caractères du texte source
S ;

— étape 2 : obtention d’une séquence d’entiers SE à partir des nombres de SN ;
— étape 3 : obtention de la somme des entiers de SE.

Pour l’exemple précédent, les étapes sont les suivantes : " 343 47 50 36 " −→ ["343", "47",
"50", "36"] −→ [343, 47, 50, 36] −→ 476

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

5.18

UGA, UFR IM2AG, Algorithmique, langages et programmation Définitions récursives

(ii) Fonctions intermédiaires
SommeNb étant le nom associé au problème posé, on associe une fonction à chacune des étapes :
LesNombres (étape 1), LesEntiers (étape 2) et Somme (étape 3). Plus précisément, on définit le
lexique suivant :

espace : caractère ’ ’
chiffre : type caractère sur [’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’]
texte : type séquence de caractère { chiffres ou espaces }
Nombre : type séquence non vide de chiffre
SéqNb : type séquence de Nombre
SéqEnt : type séquence d’entier ≥ 0
SommeNb : fonction (t : texte) −→ entier ≥ 0 { somme des entiers représentés par le texte donné }
LesNombres : fonction (t : texte) −→ SéqNb { séquence des nombres du texte }

{ exemple : LesNombres(" 343 47 50 36 " = ["343", "47", "50", "36"] }
LesEntiers : fonction (S : SéqNb) −→ SéqEnt { séquence des entiers représentés par les nombres }

{ exemple : LesEntiers(["343", "47", "50", "36"]) = [343, 47, 50, 36] }
Somme : fonction (S : SéqEnt) −→ entier ≥ 0 { somme des entiers de la séquence, 0 si elle est vide }

(iii) Questions

Q1. Donner une réalisation de la fonction SommeNb, en termes des fonctions du lexique ci-
dessus.

Q2. Donner des équations de récurrence définissant la fonction Somme.

Q3. Pour réaliser la fonction LesEntiers, on définit les fonctions suivantes :

DversE : fonction (N : Nombre) −→ entier ≥ 0 { entier dont la représentation en base 10 est donnée }
{ exemple : DversE("343") = 343 }

CversE : fonction (c : chiffre) −→ entier ≥ 0 { entier correspondant au chiffre donné }
{ exemple : CversE(’3’) = 3 }

— Donner des équations de récurrence définissant la fonction LesEntiers, en utilisant DversE.
— Donner des équations de récurrence définissant la fonction DversE, en utilisant CversE.

Q4. Pour réaliser la fonction LesNombres on introduit deux fonctions de découpage selon une
propriété (voir l’analogie avec l’exemple E5.9) :

SsEspD : fonction (T : texte) −→ texte { le texte sans ses espaces éventuels du début }
{ Fin de T selon la propriété "être un chiffre". }
{ Exemple : SsEspD(" 343 47 50 36 ") = "343 47 50 36 " }

CDetR : fonction (T : texte) −→ texte, texte { les chiffres du début, s’il y en a, et le reste }
{ Posons <CD, R> = CDetR(T) : CD est le début de T selon la propriété "être un espace" et R est
la fin de T selon cette propriété. }
{ Exemple : CDetR("343 47 50 36 ") = <"343", " 47 50 36 "> }

— Donner une réalisation récursive de la fonction LesNombres en termes de SsEspD et
CDetR.

— Donner des équations de récurrence définissant chacune des fonctions SsEspD et CDetR.

E5.40 : Tautogrammes
Une phrase est un tautogramme si tous ses mots commencent par la même lettre. Par exemple,
la phrase le lion lape le lait lentement est un tautogramme. On étudie une fonction booléenne
nommée EstTaut qui détermine si une phrase est un tautogramme.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

5.19

UGA, UFR IM2AG, Algorithmique, langages et programmation Définitions récursives

Les phrases considérées sont des séquences formées de lettres et de séparateurs (espaces, signes
de ponctuation, etc.). Un mot est une séquence de lettres délimitée par des séparateurs ou
par les extrémités de la phrase. Deux mots sont séparés par un ou plusieurs séparateurs. La
phrase peut débuter ou se terminer par zéro, un ou plusieurs séparateurs. On dispose de deux
fonctions booléennes nommées EstLettre et EstSéparateur, permettant respectivement de savoir
si un caractère est une lettre ou si un caractère est un séparateur.
Pour traiter les questions qui suivent, on introduira des séquences intermédiaires et les fonctions
adéquates associées, de manière à décrire la solution par composition de ces fonctions.

Q1. Décrire la fonction EstTaut, en raisonnant sur la séquence des premières lettres de mot.

Q2. On assouplit maintenant la notion de tautogramme en ne considérant pas les mots appar-
tenant à une liste LM donnée : une phrase est un tautogramme si tous ses mots n’appartenant
pas à LM commencent par la même lettre. Décrire une fonction booléenne EstTaut1 qui indique
si une phrase est un tautogramme dans ces nouvelles conditions, en raisonnant sur la séquence
des mots.

Q3. On considère un texte composé de phrases séparées par des points ("."). Décrire une
fonction qui donne le nombre de phrases du texte qui sont des tautogrammes, en raisonnant
sur la séquence des phrases.

E5.41 : Monnaie
On considère une monnaie M constituée de pièces (ou billets) ayant des valeurs nominales
distinctes. Étant donné une somme d’argent S, il existe plusieurs manières d’en faire la monnaie,
c’est-à-dire d’en donner l’équivalent en pièces de la monnaie M. Par exemple si M comporte des
pièces de 1=C, 0,5=C, 0,2=C et 0,1=C, il y a quatre manières de faire la monnaie de 0,5=C : 1 pièce
de 0,5=C ; 2 pièces de 0,2=C et 1 pièce de 0,1=C ; 1 pièce de 0,2=C et 3 pièces de 0,1=C ; 5 pièces de
de 0,1=C.
Pour une somme donnée S, il s’agit de calculer le nombre de manières d’en faire la monnaie
dans une monnaie donnée M, en supposant qu’il n’y a aucune limite sur le nombre de pièces
disponibles.

(i) Principe de l’analyse récurrente
On choisit l’une des valeurs de pièces de M, soit p, et l’on distingue toutes les solutions com-
portant au moins une pièce de p=C et toutes les solutions n’en comportant pas. Ainsi on ramène
le problème portant sur M et S, au même problème portant d’une part sur M et S-p et d’autre
part sur M’ et S, où M’ est une monnaie comportant toutes les pièces de M sauf celles de valeur
p.
On représente une monnaie par une séquence de pièces. Pour choisir une valeur de pièces d’une
monnaie, on prend la première pièce de la séquence.

Valeur : type entier > 0
pièce : type Valeur
Monnaie : type séquence de pièce
NbM : fonction (M : Monnaie non vide, S : Valeur) −→ entier > 0

{ Nombre de manières de faire la monnaie de S dans M }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

5.20

UGA, UFR IM2AG, Algorithmique, langages et programmation Définitions récursives

(ii) Questions

Q1. Compléter la réalisation suivante de la fonction NbM :

NbM(M, S) :
retour : soit p= premier(M), M’ = fin(M)

dans soit avec = •••••••, { nombre de solutions avec p }
sans = ••••••• { nombre de solutions sans p }

dans avec + sans

Q2. Examiner le processus d’évaluation d’un appel de la fonction NbM en dessinant un arbre
des appels récursifs engendrés (Cf. exemple E5.10).

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

5.21

UGA, UFR IM2AG, Algorithmique, langages et programmation Définitions récursives

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

5.22

UGA, UFR IM2AG, Algorithmique, langages et programmation Arbres : une introduction

6. Arbres : une introduction

A. Eléments de cours : arbres binaires
a) Notations

(i) Constructeurs, testeurs et sélecteurs
— /\ dénote l’arbre binaire vide. Le testeur associé est la fonction booléenne nommée

EstVide ?.
— /G, r, D\ dénote l’arbre binaire non vide de racine r, de sous-arbre gauche G et de sous-

arbre droit D. Les sélecteurs associés sont les fonctions nommées Gauche, Droit et Racine.

Elément : type ; ArbreBin : type arbre binaire Elément
EstVide ? : fonction (A : ArbreBin) −→ booléen { vrai ⇐⇒ A est l’arbre vide }
Gauche : fonction (A : ArbreBin non vide) −→ ArbreBin { Gauche (/G, r, D\) = G }
Droit : fonction (A : ArbreBin non vide) −→ ArbreBin { Droit (/G, r, D\) = D }
Racine : fonction (A : ArbreBin non vide) −→ Elément { Racine (/G, r, D\) = r }

(ii) Notations abrégées pour décrire les arbres non vides
— //r\\ est une forme abrégée de / /\, r, /\ \, et dénote un arbre binaire singleton, de

racine r. Le testeur associé est la fonction booléenne nommée EstSingleton ?.
— //G, r\\ est une forme abrégée de / G, r, /\ \ où G est non vide : la racine de cet

arbre est un noeud unaire gauche. Le testeur associé est la fonction booléenne nom-
mée EstUnaireGauche ?.

— //r, D\\ est une forme abrégée de / /\, r, D \ où D est non vide : la racine de cet
arbre est un noeud unaire droit. Le testeur associé est la fonction booléenne nommée
EstUnaireDroit ?.

— //G, r, D\\ est une forme abrégée de / G, r, D \ où G et D sont non vides : la racine de
cet arbre est un noeud binaire. Le testeur associé est la fonction booléenne nommée
EstBinaire ?.

Pour spécifier ces testeurs, on utilise les notations suivantes :

ExG ?(A) ⇐⇒ non EstVide ?(Gauche(A)) ; ExD ?(A) ⇐⇒ non EstVide ?(Droit(A))
EstSingleton ? : fonction (A : ArbreBin non vide) −→ booléen

{ vrai ⇐⇒ non ExG ?(A) et non ExD ?(A) }
EstUnaireG ? : fonction (A : ArbreBin non vide) −→ booléen

{ vrai ⇐⇒ ExG ?(A) et non ExD ?(A) }
EstUnaireD ? : fonction (A : ArbreBin non vide) −→ booléen

{ vrai ⇐⇒ non ExG ?(A) et ExD ?(A) }
EstBinaire ? : fonction (A : ArbreBin non vide) −→ booléen

{ vrai ⇐⇒ ExG ?(A) et ExD ?(A) }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

6.1

UGA, UFR IM2AG, Algorithmique, langages et programmation Arbres : une introduction

b) Modèles d’analyse récurrente

Forme des équations de
récurrence de f

Forme des réalisations récur-
sives de f(X)

Modèle 1 :
avec l’arbre
vide

f(/\) =
f(/G, r, D\) =

si EstVide ?(X) alors •••
sinon soit /G, r, D\ = X

dans •••

Modèle 2 :
sans l’arbre
vide

f(//r\\) =
f(//G,r\\) =
f(//r,D\\) =
f(//G, r, D\\) =

soit /G, r, D\ = X
dans selon G, D

EstSingleton ?(X) : •••
EstUnaireG ?(X) : •••
EstUnaireD ?(X) : •••
EstBinaire ?(X) : •••

c) Linéarisation d’un arbre binaire : parcours d’arbres

Le parcours d’un arbre binaire peut s’effectuer de plusieurs façons :
Préordre : on parcourt la racine, puis le sous-arbre gauche, puis le sous-arbre droit
Ordre symétrique : on parcourt le sous-arbre gauche, puis la racine, puis le sous-arbre

droit
Ordre terminal : on parcourt le sous-arbre gauche, puis le sous-arbre droit, puis la racine

Sur l’arbre de la figure 6.1, le parcours en préodre construit la liste A,B,D,C,E,G,F, le parcours
en ordre symétrique construit la liste D,B,A,E,G,C,F et le parcours en ordre terminal construit
la liste D,B,G,E,F,C,A.

A

B

D

C

F

C FD

E

G

B AEG

Figure 6.1 – parcours d’un arbre en ordre symétrique

Pour réaliser un tel parcours, on peut spécifier la fonction suivante :

SéqSym : fonction (A : arbre binaire Elément) −→ séquence d’Elément
{ Séquence des nœuds de l’arbre en ordre symétrique }

Les équations de récurrence associées sont :

SéqSym(/\) = []
SéqSym(/G,r,D\) = SéqSym(G) & [r] & SéqSym(D)

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

6.2

UGA, UFR IM2AG, Algorithmique, langages et programmation Arbres : une introduction

d) Recherche en arbre

La recherche en arbre peut se décliner sous trois formes. Le lexique général est le suivant :

Elément : type
ArbreBin : type arbre binaire Elément
P : fonction (E : Elément) −→ booléen

— Existence d’un élément vérifiant une propriété P :
On spécifie la fonction

ExisteP : fonction (A : ArbreBin, •••) −→ booléen

dont les équations de récurrence sont :

ExisteP(/\, •••) = faux
ExisteP(/G,r,D\, •••) = P(r) ou ExisteP(G, •••) ou ExisteP(D, •••)

— Extraction d’un élément vérifiant une propriété P :
On spécifie la fonction

UnP : fonction (A : ArbreBin, •••) −→ booléen, Elément

dont les équations de récurrence sont :

UnP(/\, •••) = <faux, ?>
UnP(/G,r,D\, •••) =

si P(r) alors <vrai, r>
sinon soit <trouvé, E> = UnP(G, •••)

dans si trouvé alors <vrai, E> sinon UnP(D, •••)

— Extraction du premier élément vérifiant une propriété P selon un ordre de parcours :
On spécifie la fonction

PremierPSym : fonction (A : ArbreBin, •••) −→ booléen, Elément

dont les équations de récurrence sont (pour le cas d’un parcours en ordre symétrique) :

PremierPSym(/\, •••) = <faux, ?>
PremierPSym(/G,r,D\, •••) =

soit <trouvé, E> = PremierPSym(G, •••)
dans si trouvé alors <vrai, E>

sinon si P(r) alors <vrai, r> sinon PremierPSym(D, •••)

B. Exemples d’exercices rédigés
Exemple E6.1 : Somme des entiers d’un arbre binaire
Décrire une fonction qui détermine la somme des entiers d’un arbre binaire donné.

Somme : fonction (A : arbre binaire d’entier) −→ entier

(i) Analyse récurrente (modèle 1)

(1) Somme (/\) = 0
(2) Somme(/G, r, D\) = r + Somme(G) +Somme(D)

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

6.3

UGA, UFR IM2AG, Algorithmique, langages et programmation Arbres : une introduction

(ii) Réalisation récursive

Somme(A) :
retour : si EstVide ?(A) alors 0

sinon Racine(A) + Somme(Gauche(A)) + Somme(Droit(A))

On peut aussi écrire

Somme(A) :
retour : si EstVide ?(A) alors 0

sinon soit /G, r, D\ = A dans r + Somme(G) + Somme(D)

Exemple E6.2 : Niveau minimum des feuilles d’un arbre
Décrire une fonction qui détermine le niveau minimum des feuilles d’un arbre binaire non vide.

Le niveau d’un noeud est le nombre de noeuds du chemin y conduisant à partir de la racine.
On s’intéresse donc aux chemins les plus courts pour atteindre une feuille.

Elément : type ; ArbreBin : type arbre binaire Elément
NivM : fonction (A : ArbreBin non vide) −→ entier > 0

(i) Analyse récurrente (modèle 2)
La fonction ne peut pas être définie pour l’arbre vide. On applique le modèle d’analyse sur les
arbres non vides et on utilise une fonction Min2V qui détermine le minimum de deux entiers :

(1) NivM (/ /\, r, /\ \) = 1
(2) NivM (/ G, r, /\ \) = 1 + NivM(G) { G non vide }
(3) NivM (/ /\, r, D \) = 1 + NivM (D) { D non vide }
(4) NivM (/G, r, D\) = 1 + Min2V(NivM (G), NivM (D)) { G et D non vides }

On peut simplifier l’écriture en utilisant les notations abrégées suivantes (remarquer qu’il
n’est plus nécessaire de préciser dans les équations 2 à 4 que G ou D ne sont pas vides) :

(1) NivM (//r\\) = 1
(2) NivM (//G, r\\) = 1 + NivM(G)
(3) NivM (//r, D\\) = 1 + NivM (D)
(4) NivM (//G, r, D\\) = 1 + Min2V(NivM (G), NivM (D))

(ii) Réalisation récursive

NivM(A) :
retour : soit G = Gauche(A), D = Droit(A)

dans selon A
EstSingleton ?(A) : 1
EstUnaireG ?(A) : 1 + NivM(G)
EstUnaireD ?(A) : 1 + NivM(D)
EstBinaire ?(A) : 1 + Min2V(NivM (G), NivM (D))

Exemple E6.3 : Nombre de feuilles d’un arbre
Décrire une fonction qui détermine le nombre de feuilles d’un arbre binaire.

NbF : fonction (A : ArbreBin) −→ entier ≥ 0

Pour identifier les feuilles d’un arbre, il faut distinguer le cas du singleton.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

6.4

UGA, UFR IM2AG, Algorithmique, langages et programmation Arbres : une introduction

(1) NbF(/\) = 0
(2) NbF(/G, r, D\) = si EstVide ?(G) et EstVide ?(D) alors 1 sinon NbF(G) + NbF (D)

On peut aussi proposer une analyse excluant l’arbre vide. Il faut alors le préciser dans la
spécification de la fonction :

NbF : fonction (A : ArbreBin non vide) −→ entier ≥ 0
(1) NbF(//e\\) = 1
(2) NbF(//G, r\\) = NbF(G)
(3) NbF(//r, D\\) = NbF(D)
(4) NbF(//G, r, D\\) = NbF(G) + NbF(D)

Exemple E6.4 : Égalité de deux arbres
Décrire une fonction qui détermine si deux arbres binaires sont égaux, c’est-à-dire s’ils ont la
même structure et s’ils comportent les mêmes éléments aux mêmes noeuds.

EgArbre : fonction (A1, A2 : ArbreBin) −→ booléen

L’analyse récurrente est fondée sur une combinaison des cas du modèle 1 d’analyse des arbres
binaires.

(1) EgArbre(/\, /\) = vrai
(2) EgArbre(/\, /G, r, D\) = faux
(3) EgArbre(/G, r, D\, /\) = faux
(4) EgArbre(/G1, r1, D1\, /G2, r2, D2\) =

r1 = r2 et puis EgArbre(G1, G2) et puis EgArbre(D1, D2)

Exemple E6.5 : Une représentation linéaire d’un arbre binaire
Décrire une fonction qui à un arbre binaire d’entiers associe un texte représentant cet arbre,
avec les conventions suivantes :

— le texte représentant l’arbre vide ou tout sous-arbre vide de l’arbre donné est un singleton
formé du caractère ’_’ (souligné).

— le texte représentant un arbre non vide commence par une parenthèse ouvrante (’(’)
suivie d’un espace et se termine par un espace suivi d’une parenthèse fermante (’)’).
A l’intérieur de ces parenthèses, on trouve d’abord le texte représentant le sous-arbre
gauche, puis une virgule entourée d’espaces, puis le texte représentant la racine, puis
une virgule entourée d’espaces, puis le texte représentant le sous-arbre droit.

TexteABE : arbre binaire d’entier −→ texte
TexteABVide : texte "_"
ParOuv : texte "(" ; ParFerm : texte ")" ; Sép : texte " , "
TexteE : fonction (e : entier) −→ texte { texte représentant l’entier donné sous forme décimale }

(1) TexteABE(/\) = TexteABVide
(2) TexteABE (/G, r, D\) =

ParOuv & TexteABE(G) & Sép & TexteE(r) & Sép & TexteABE(D) & ParFerm

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

6.5

UGA, UFR IM2AG, Algorithmique, langages et programmation Arbres : une introduction

C. Exercices
a) Familiarisation avec la notion d’arbre

E6.6 : Structuration d’un ensemble en arbre binaire
On considère un ensemble quelconque de 7 éléments. Dessiner diverses manières de structurer cet
ensemble en arbre binaire. Donner un arbre de profondeur maximum, de profondeur minimum.
En déduire la valeur des profondeurs minimum et maximum pour n éléments.

E6.7 : Des relations remarquables
Étant donné un arbre binaire A de n noeuds, on désigne par b, u et f les nombres de noeuds
binaires, de noeuds unaires, et de feuilles : n = b+u+f.

— Montrer que n-1 = u + 2b, pour tout arbre binaire non vide.
— Montrer que le nombre de sous-arbres vides est n + 1.
— La relation b=f-1 est vraie pour tout arbre binaire non vide. Démontrer cette relation par

récurrence sur l’ensemble des arbres binaires. Puis retrouver cette relation de manière
analytique.

E6.8 : Recherche dichotomique
Étant donnée une suite d’éléments classée selon une relation d’ordre, la recherche dichotomique
d’un élément dans cette suite procède de la manière suivante : si l’élément cherché n’est pas
l’élément milieu de la suite, on se ramène au même problème en considérant soit la moitié
gauche de la suite donnée, soit sa moitié droite, selon que l’élément cherché est inférieur ou
supérieur à l’élément milieu.

— Illustrer ce principe sous forme d’un arbre binaire : S étant une suite de 15 entiers
en ordre croissant, dessiner un arbre construit de la manière suivante. Chacun des sous-
arbres de cet arbre correspond à la recherche dans une sous-séquence SS de S. Les noeuds
de l’arbre sont ainsi étiquetés par des sous-séquences de S ; S est l’étiquette la racine ;
si SS sous-séquence de S est l’étiquette d’un noeud et si m est l’élément milieu de SS,
alors les sous-séquences moitié de SS (sans l’élément milieu m) sont les étiquettes des
fils gauche et droit de ce noeud. Les feuilles de l’arbre sont étiquetées par des séquences
singleton.

— Estimer le nombre maximum d’essais lorsque l’on pratique une recherche dichotomique
dans une suite de 2n-1 éléments.

b) Analyse récurrente sur les arbres binaires

Spécifier les fonctions suivantes, puis donner des équations de récurrence les définissant.

E6.9 : Profondeur d’un arbre

E6.10 : L’élément E est-il présent dans l’arbre ?

E6.11 : L’élément E fait-il partie de la descendance de l’élément F dans un arbre ?
E et/ou F peuvent ne pas être présents dans l’arbre.

E6.12 : Arbres symétriques
Le symétrique d’un arbre binaire A, est un arbre binaire B déduit de A en faisant correspondre
un sous-arbre droit à tout sous-arbre gauche et vice versa : tout se passe comme si B était

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

6.6

UGA, UFR IM2AG, Algorithmique, langages et programmation Arbres : une introduction

l’image de A dans un miroir (Figure 6.2)

arbre A arbre B

A

B

D E

C

F

G

A

C

F

B

DE

G

Figure 6.2 – deux arbres symétriques l’un de l’autre

Spécifier les fonctions suivantes et donner des équations de récurrence les définissant :
— Deux arbres sont-ils symétriques l’un de l’autre ?
— Construction de l’arbre symétrique d’un arbre.

E6.13 : Tous égaux ?
Décrire une fonction (spécification, équations de récurrence) déterminant si tous les éléments
d’un arbre binaire sont égaux entre eux.
Indication : introduire une fonction déterminant si les éléments d’un arbre binaire sont tous
égaux à un élément donné.

E6.14 : A propos du niveau d’un noeud dans un arbre
Le niveau d’un noeud dans un arbre binaire est le nombre de noeuds que l’on trouve sur le
chemin conduisant de la racine à ce noeud (inclus). La racine est de niveau 1.
Si un noeud est de niveau n >1 dans un arbre /G, r, D\ alors il se situe soit dans G, soit dans
D et il est de niveau n-1 dans le sous-arbre auquel il appartient.
Spécifier les fonctions suivantes, puis donner des équations de récurrence les définissant :

— Nombre de noeuds de niveau k. (k > 0 donné).
— Nombre de feuilles de niveau k. (k > 0 donné).
— Niveau d’un élément donné (0 si l’élément n’est pas présent dans l’arbre)

E6.15 : Les ascendants

— Spécifier une fonction déterminant la liste des ascendants d’un élément dans un arbre
dont les éléments sont distincts deux à deux. Préciser le cas où l’élément donné n’est pas
présent dans l’arbre.

— Donner des équations de récurrence définissant cette fonction.

D. Problèmes dirigés
E6.16 : Arbre de recherche binaire
Nous traitons ici une forme particulière d’organisation arborescente d’un ensemble d’informa-
tions destinée à faciliter la recherche d’une information donnée. Lorsque l’ensemble est organisé
en séquence, et dans le cas défavorable où l’élément cherché n’est pas présent, le coût de l’éva-
luation de la fonction de recherche dépend linéairement du nombre d’éléments de l’ensemble. Il

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

6.7

UGA, UFR IM2AG, Algorithmique, langages et programmation Arbres : une introduction

en est de même lorsque l’ensemble est structuré en arbre binaire. Le lecteur peut le vérifier en
examinant la fonction qui fait l’objet de l’exercice E6.10. On peut améliorer cette performance
en imposant une propriété particulière aux éléments de l’arbre. C’est l’objet de ce problème.

(i) Définition
On considère un arbre binaire dont les éléments appartiennent à un type muni d’une relation
d’ordre.
Un tel arbre est dit arbre de recherche binaire s’il vérifie la propriété ARB définie comme suit
(Max(A) et Min(A) dénotent les valeurs maximum et minimum de l’ensemble des éléments de
A) :

(1) ARB(/\) = vrai
(2) ARB(/G, r, D\) =

(EstVide ?(G) ou alors (ARB(G) et puis r ≥ Max(G)))
et (EstVide ?(D) ou alors (ARB (D) et puis r < Min(D)))

Cette définition signifie que pour tout noeud de l’arbre, si E désigne l’élément associé à ce
noeud, tous les éléments du sous-arbre gauche de ce noeud sont inférieurs ou égaux à E et tous
ceux du sous-arbre droit sont strictement supérieurs à E. Ceci est illustré par l’exemple de la
Figure 6.3.

15

7 33

3 13

1510

12

Figure 6.3 – un arbre de recherche binaire

(ii) Compréhension intuitive
A titre d’exemple, nous considérons ici une liste de prénoms avec répétitions éventuelles. L’ordre
considéré est l’ordre alphabétique.

— Construire manuellement un arbre binaire de recherche à partir de cette liste : le premier
prénom permet de construire un arbre simple. Le deuxième prénom est ajouté à l’arbre
de manière à respecter la propriété. On procède ainsi prénom par prénom dans l’ordre
de la liste initiale.

— Construire un nouvel arbre selon le même principe mais en partant d’une autre liste
des mêmes prénoms. Comparer les arbres obtenus. Calculer la profondeur des arbres
obtenus.

— Donner une liste initiale des prénoms qui conduise à un arbre de profondeur maximale.
— Donner une liste initiale des prénoms qui conduise à un arbre de profondeur minimale.
— Formuler en français le principe d’ajout d’un nouveau prénom à un arbre existant.
— Formuler en français le principe de recherche d’un prénom dans l’arbre. Dénombrer les

comparaisons de prénoms nécessaires dans le cas où le prénom n’est pas présent. Donner
une borne supérieure.

— Formuler en français le principe d’obtention de la liste des prénoms en ordre alphabé-
tique.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

6.8

UGA, UFR IM2AG, Algorithmique, langages et programmation Arbres : une introduction

(iii) Gestion d’un arbre de recherche binaire
On considère le problème de la gestion d’un répertoire téléphonique, ensemble de couples <nom
d’une personne, numéro de téléphone>. Le répertoire est représenté par un arbre de recherche
binaire, l’ordre considéré étant l’ordre alphabétique sur les noms.
Étudier (spécification, équations de récurrence) les fonctions suivantes :

— Liste du répertoire dans l’ordre alphabétique des personnes.
— Opérations de gestion (sans tenir compte d’erreurs éventuelles de cohérence des don-

nées) : initialisation, ajout, modification, suppression, consultation.

E6.17 : Dictionnaire arborescent
(i) Organisation du dictionnaire
On considère un dictionnaire composé d’un ensemble de mots distincts, organisé comme indiqué
Figure 6.4.

a(c)

a(b)

(a) a r t i c l e *

r t i c l e *

b r e *

r t *

e

b

b r e *

i c l e *

l è v e *

a r r e *

r *

*

Figure 6.4 – organisation d’un dictionnaire sous forme arborescente avec partage des
plus longs préfixes communs : (a) le mot article marqué par une étoile ;
(b) les mots article et arbre ont ar pour plus long préfixe commun ;
(c) les mots art, arbre, élève, barre, bal, article, bar.

— A chaque mot correspond la séquence de ses caractères, marquée par le caractère étoile
(’*’).

— Deux mots peuvent avoir un préfixe commun : par exemple les mots arbre et article ont
ar pour plus long préfixe commun. Ce plus long préfixe commun n’est pas dupliqué : les
deux séquences représentant les deux mots sont reliées au niveau du premier caractère
qui diffère d’une séquence à l’autre.

— Il est possible qu’un mot soit le préfixe d’un autre mot. Par exemple, le mot art est

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

6.9

UGA, UFR IM2AG, Algorithmique, langages et programmation Arbres : une introduction

le début du mot article. Le caractère ’*’ qui marque la fin des mots permet alors de
distinguer le cas où art est pas présent dans l’ensemble du cas où il ne l’est pas.

Ainsi, le dictionnaire est organisé comme une collection structurée de caractères dans laquelle
chaque caractère peut avoir deux types de liens :

— Un lien successeur : dans le mot art, la lettre r suit la lettre a, la lettre t suit la lettre r.
Un tel lien est figuré dans les dessins par une flèche horizontale.

— Un lien alternan : après le préfixe ar, la lettre b est un alternant de la lettre t ; après le
préfixe art, le caractère * est un alternant de la lettre i, etc. Un tel lien est figuré dans
les dessins par une flèche verticale.

Remarques
— A priori, il n’y a pas d’ordre imposé entre les alternants.
— Le partage des plus longs préfixes communs implique que, dans une liste d’alternants

comme par exemple [’é’, ’r’, ’l’], dans la Figure 6.4 c, on ne trouve jamais deux fois le
même caractère.

— Un caractère ’*’ n’a jamais de successeur mais il peut avoir un alternant.

(ii) Interprétation comme un arbre binaire
Le dictionnaire peut être inteprété comme étant un arbre binaire de caractères : on peut par
exemple convenir qu’un lien successeur correspond à un lien gauche et qu’un lien alternant
correspond à un lien droit. La racine de l’arbre correspond au premier caractère du premier
mot : dans l’exemple ci-dessus, il s’agit de la lettre a des mots commençant par a. Un sous-
arbre gauche n’est vide que si sa racine est une étoile. Dans tout arbre de la forme /G, r, D\,
si r n’est pas une étoile, la racine de G est le successeur de r et si D n’est pas vide, la racine de
D est l’alternant de r.
Dessiner l’arbre binaire correspondant à la Figure 6.4.

(iii) Consultation et gestion du dictionnaire
L’objet de l’exemple est d’étudier quelques fonctions de traitement d’un dictionnaire repré-
senté sous forme arborescente, en l’interprétant comme un arbre binaire de caractères avec la
convention énoncée ci-dessus en (ii)
Nous utilisons le lexique suivant :

étoile : caractère ’*’
MotMarqué : type séquence non vide de caractère terminée par une étoile
Mot : type séquence de caractère
Dico : type arbre binaire de caractère

Étudier les fonctions suivantes :

Q1. NbM détermine le nombre de mots présents dans un dictionnaire.

Q2. Ap détermine si un mot marqué donné appartient à un dictionnaire.

Q3. NbML détermine le nombre de mots de longueur k dans un dictionnaire (marque incluse).

Q4. LesMots construit la séquence des mots (non marqués) d’un dictionnaire.

Q5. LeDico est une opération de construction d’un dictionnaire formé d’un seul mot.

Q6. Plus est une opération d’ajout d’un mot marqué à un dictionnaire.

Q7. Moins est une opération de suppression d’un mot marqué d’un dictionnaire.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

6.10

UGA, UFR IM2AG, Algorithmique, langages et programmation Réalisation récursive d’une action

7. Réalisation récursive d’une action

A. Eléments de cours
a) Observation de la réalisation récursive d’une action

Contexte : une machine d’affichage

L’état de la machine d’affichage est caractérisé par l’état de deux composants : l’écran et le
curseur. L’écran est un ensemble de positions d’affichage dans chacune desquelles on peut placer
un caractère. Un curseur nommé Crs, désigne à tout instant la position de l’écran dans laquelle
on est susceptible de placer un caractère.
Un état de l’écran est caractérisé par l’ensemble des caractères qu’il comporte. L’écran est vide
lorsque toutes les positions d’affichage comportent un espace. L’écran est organisé sous forme
d’une suite de lignes. Chaque ligne est une suite de positions d’affichage. La première position
de la première ligne de l’écran est nommée PremPos (en abrégé PrP). Toute position p de l’écran
a un successeur (successeur dans la ligne ou première position de la ligne suivante) noté suc (p).
Lorsque le curseur est sur la première position d’une ligne, on dit qu’il est au début de la ligne.
Dans les exemples et exercices qui suivent, nous utilisons les primitives suivantes :

ViderEcran { en abrégé VE } : action
{ état initial : indifférent ; état final : écran vide et Crs = PrP }

AfficherCaractère { en abrégé AfCar } : action (donnée c : caractère)
{ état initial : Crs=p0, écran indifférent
état final : Crs=suc (p0), écran modifié en p0 par le caractère donné }

AfficherChaîne { en abrégé AfCh } :
action (donnée S : séquence de caractère)
{ état initial : Crs=p0, écran indifférent
état final : la chaîne donnée a été affichée à partir de la position p0 et le curseur suit le dernier
caractère de la chaîne affichée }

EstAuDébut ? { en abrégé AuDébut } : fonction −→ booléen
{ vrai ⇐⇒ le curseur est au début de sa ligne }

ALaLigne : action
{ état initial : Crs=p0, écran indifférent ; état final : Crs = 1ère position de la ligne suivant celle de
p0 ; écran inchangé par rapport à l’état initial }

Exemple E7.1 : Forme binaire d’un entier
Étudier l’affichage de la forme binaire d’un entier naturel.

AfBin1 : action (donnée e : entier > 0)
{ état initial : Crs=p0, écran indifférent ; état final : la représentation binaire de l’entier donné a été
affichée à partir de p0. Le curseur suit le dernier bit affiché. Le reste de l’écran est inchangé. }

Analyse récurrente (fonctionnelle) :

EntVersBin : fonction (e : entier > 0) −→ texte { formé de ’0’ et de ’1’ }
(1) EntVersBin (1) = "1"
(2) EntVersBin (2*n) = EntVersBin(n) •’0’ { n > 0 }
(3) EntVersBin (2*n +1) = EntVersBin(n) •’1’ { n > 0 }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

7.1

UGA, UFR IM2AG, Algorithmique, langages et programmation Réalisation récursive d’une action

On obtient la réalisation récursive suivante :

AfBin1 (X) :
si X = 1 alors AfCar (’1’)
sinon AfBin1 (X quotient 2) ; AfCar (si pair (X) alors ’0’ sinon ’1’)

Pour comprendre ce texte, on peut procéder par réécriture. Par exemple, l’appel AfBin1 (13) se
réécrit successivement de la manière suivante :
AfBin1 (13) −→ AfBin1 (6) ; AfCar (’1’)

−→ AfBin1 (3) ; AfCar (’0’) ; AfCar (’1’)
−→ AfBin1 (1) ; AfCar (’1’) ; AfCar (’0’) ; AfCar (’1’)
−→ AfCar (’1’) ; AfCar (’1’) ; AfCar (’0’) ; AfCar (’1’)

L’exécution de l’appel AfBin1 (13) engendre tout d’abord successivement les appels AfBin1 (6),
AfBin1 (3), et AfBin1 (1), laissant en attente à chaque niveau un appel de l’action AfCar. Ces
appels sont exécutés en ordre inverse dans un second temps. On peut visualiser ce processus
en mettant en évidence sa structure emboîtée par des indentations, chaque niveau de marge
correspondant à un niveau d’appel de l’action récursive :

AfBin1 (13)
AfBin1 (6)

AfBin1 (3)
AfBin1 (1)

AfCar (’1’)
AfCar (’1’)

AfCar (’0’)
AfCar (’1’)

b) Du récursif à l’itératif

b.1. Schéma général considéré
Le schéma général que nous étudions est le suivant :

A(P) :
si EstBase(P) alors

Alpha(P)
sinon Beta(P)

A(T(P))
Gamma(P)

Param : type des paramètres
EstBase : fonction (P : Param) −→ booléen

{ EstBase(P) vrai ⇐⇒ la valeur de P correspond au cas de base }
Alpha, Beta, Gamma : action (donnée : Param)
T : fonction (P : Param) −→ Param

b.2. Structure des appels récursifs

Pour une telle définition, la liste des paramètres des appels récursifs est : P, T(P), T(T(P)), . . .,
Tn−1(P), Tn(P).

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

7.2

UGA, UFR IM2AG, Algorithmique, langages et programmation Réalisation récursive d’une action

La structure du processus d’exécution est illustrée comme suit :

A(P)
Beta(P)
A(T(P))

Beta(T(P))
A(T(T(P)))

. . .
Beta(Tn−1(P))
A(Tn(P))

Alpha(Tn(P))
Gamma(Tn−1(P))

. . .
Gamma(T(P))

Gamma(P)

On observe les appels récursifs successifs : exécution des Beta, mise en attente des Gamma. Puis,
le cas de base : exécution d’Alpha. Puis, l’exécution des Gamma mises en attente, dans l’ordre
inverse de la mise en attente.

b.3. Schéma itératif associé (utilisation d’une pile)

Pour traduire un algorithme récursif en un algorithme itératif, on utilise une séquence S pour
mémoriser les valeurs de P.
Si l’algorithme récursif a la forme suivante :

A(P) :
si EstBase(P) alors

Alpha(P)
sinon

Beta(P)
A(T(P))
Gamma(P)

L’algorithme itératif équivalent a la forme suivante :

A(P) :
S : séquence de Param
Pcour : Param

S ←− [] ; Pcour ←− P
tant que non EstBase(Pcour)

Beta(Pcour)
S ←− S •Pcour ; Pcour ←− T(Pcour)

Alpha(Pcour)
tant que non EstVide ?(S)

Pcour ←− dernier(S) ; S ←− début(S)
Gamma(Pcour)

Les ajouts et les suppressions dans S se font toujours à la même extrémité : S est une pile.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

7.3

UGA, UFR IM2AG, Algorithmique, langages et programmation Réalisation récursive d’une action

b.4. Action récursive terminale

Les cas particuliers du schéma général récursif sont les cas où Beta ou Gamma sont vides.
Lorsque Gamma est vide, on parle d’une action récursive terminale.
Le schéma récursif est alors :

A(P) :
si EstBase(P) alors

Alpha(P)
sinon

Beta(P)
A(T(P))

Le schéma itératif équivalent est :

A(P) :
Pcour : Param

Pcour ←− P
tant que non EstBase(Pcour)

Beta(Pcour) ; Pcour ←− T(Pcour)
Alpha(Pcour)

B. Exemples d’exercices rédigés
a) Tracé de dessins

On utilise la machine-tracés définie au §2.D.

Exemple E7.2 : Carrés emboîtés
Définir une action de tracé permettant de tracer une figure formée de n carrés emboîtés (n=4
sur la figure 7.1). La figure doit être tracée sans lever la plume et sans tracer deux fois le même
trait. On peut toutefois passer plusieurs fois par le même point.

Figure 7.1 – 4 carrés emboîtés à tracer sans lever la plume

Une telle figure est définie par le nombre de carrés emboîtés et son carré extérieur. On convient
ici qu’un carré est défini par l’un de ses sommets, sa taille et son cap : la taille du carré est la
taille de ses côtés ; le cap du carré est le cap du côté passant par le sommet tel qu’un observateur
placé sur ce sommet et regardant dans le sens de ce côté, voit tous les autres côtés à sa gauche
et devant lui .
Ainsi une figure est donnée par son ordre (nombre de carrés emboîtés), son sommet (sommet
du carré extérieur), sa taille (taille du carré extérieur) et son cap (cap du carré extérieur).

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

7.4

UGA, UFR IM2AG, Algorithmique, langages et programmation Réalisation récursive d’une action

On spécifie l’action Tcaremb, de tracé de carrés emboîtés :

Tcaremb : action (donnée n : entier > 0, t : réel > 0)
{ Trace sans lever la plume et sans tracer deux fois le même trait, une figure de n carrés emboîtés et
de taille t :
état initial : plume basse au sommet de la figure et au cap de la figure.
état final : figure tracée, plume dans l’état initial }

On définit l’ensemble des figures de manière récurrente :
— Base : la figure d’ordre 1 comporte un seul carré ;
— Construction récurrente : une figure d’ordre n+1 est composée d’un carré extérieur conte-

nant une figure d’ordre n, comme l’illustre la figure 7.2.

t

c
s

Figure 7.2 – Une figure d’ordre n+1 est constituée d’un carré et d’une figure d’ordre
n.

Pour tenir compte de la contrainte de tracé, on décompose le carré extérieur en deux parties
délimitées par l’un des points communs au carré extérieur et à la figure intérieure. On décompose
ainsi le tracé d’un carré en deux actions intermédiaires de tracé : TDébutCar et TFinCar de telle
sorte que :

Tcarré (t) : TDébutCar (t) ; TFinCar (t)

Tdébutcar : action (donnée t : réel >0)
{ trace le début d’un carré de taille donnée :
Etat initial : plume basse au sommet du carré, orientée selon le cap du carré
Etat final : début du carré tracé, plume basse au milieu d’un côté et au cap de ce côté }

Tfincar : action (donnée t : réel >0)
{ trace la fin d’un carré de taille donnée :
Etat initial : plume basse au milieu du côté d’un carré, orientée selon le cap de ce côté
Etat final : fin du carré tracée, plume basse au sommet du carré et au cap du carré }

En choisissant comme point intermédiaire le milieu du premier côté du carré, on obtient :

Tdébutcar (t) : Av (t/2)
Tfincar (t) :

Av (t/2) ; TrG (90)
pour i allant de 1 à 3 : Av (t) ; TrG (90)

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

7.5

UGA, UFR IM2AG, Algorithmique, langages et programmation Réalisation récursive d’une action

On peut maintenant donner une réalisation récursive de l’action Tcaremb, s’appuyant sur la
définition récurrente de la figure :

Tcaremb (n, t) : { réalisation récursive }
{ plume basse au sommet et au cap de la figure }

si n = 1 alors
Tdébutcar (t) ; Tfincar (t)

sinon
Tdébutcar (t)
TrG (45)

{ plume basse au milieu du côté, au cap de la figure intérieure }
Tcaremb (n-1, t/

√
2)

{ figure intérieure tracée, plume basse à son sommet et à son cap }
TrD (45)
Tfincar (t)

{ figure tracée, plume dans le même état qu’au départ }

Par exemple l’algorithme

Vider ; Baisser ; Tcaremb (10, 4)

trace une figure d’ordre 10 de sommet le centre de l’écran, de taille 4 et de cap OuestEst.

Forme itérative de l’action de tracé de carrés emboîtés

Une manière de concrétiser le processus engendré par l’appel d’une action récursive est de
réaliser une action itérative qui décrit le même processus. L’équivalence considérée ici est définie
en considérant la succession d’appels des actions élémentaires qui sont composées par l’action
récursive (dans notre exemple, les actions Tdébutcar, Tfincar, TrD et TrG).
Le tracé de la figure consiste tout d’abord en une succession de tracés de débuts de carrés,
en commençant par le carré extérieur et en terminant par le carré le plus interne, puis en une
succession de tracés de fins de carrés dans l’ordre inverse.

Tcaremb (n, t) : { réalisation itérative }
{ plume basse au sommet et au cap de la figure }

tc : réel { taille de la figure courante }
nc : entier { ordre de la figure courante }
tc ←− t ; nc ←− n { figure à tracer }
{ suite des tracés des débuts des carrés extérieurs des figures d’ordre > 1 }
tant que nc > 1

{ plume basse au sommet et au cap de la figure courante, d’ordre nc et de taille tc }
Tdébutcar (tc) ; TrG (45) ; tc ←− tc/

√
2 ; nc ←− nc -1

{ tracé du carré le plus interne : figure d’ordre 1 }
Tdébutcar (tc) ; Tfincar (tc)
{ suite de tracés de fins de carrés extérieurs de figures d’ordre > 1 }
tant que nc < n

{ plume basse au sommet et au cap de la figure intérieure d’ordre nc et de taille tc }
nc ←− nc +1 ; tc ←− tc*

√
2 ;

TrD (45) ; Tfincar (tc)
{ figure tracée, plume dans le même état qu’au départ }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

7.6

UGA, UFR IM2AG, Algorithmique, langages et programmation Réalisation récursive d’une action

b) Machine d’affichage

On utilise la machine d’affichage définie au paragraphe 7.A.a).

Exemple E7.3 : Affichage d’un texte
On considère l’action AfChaîne1 spécifiée de la manière suivante :

AfChaîne1 : action (donnée T : texte)
{ Affiche le texte T.
e.i. : soit p la position initiale du curseur sur l’écran ;
e.f. : le texte T est affiché à partir de la position p ; le curseur se trouve sur la position suivant celle
du dernier caractère affiché. Si le texte est vide : action vide. }

Donner une réalisation récursive de l’action AfChaîne1.

Version 1 : On découpe le texte donné selon son premier caractère : T = premier(T)◦fin(T),
ce qui donne la réalisation correspondante :

AfChaîne1(T) : { version 1 }
si non EstVide ?(T) alors

AfCar(premier(T))
AfChaîne1(fin(T))

Version 2 : On découpe le texte donné selon son dernier caractère : T = début(T)•dernier(T),
ce qui donne la réalisation correspondante :

AfChaîne1(T) : { version 2 }
si non EstVide ?(T) alors

AfChaîne1(début(T))
AfCar(dernier(T))

On modifie maintenant la spécification initiale de l’action et on définit une nouvelle action :

AfChaîne2 : action (donnée T : texte)
{ Affiche le texte T.
e.i. : soit p la position initiale du curseur sur l’écran ;
e.f. : le texte T est affiché à partir de la position p ; le curseur se trouve au début de la ligne suivant
celle du dernier caractère affiché. Si le texte est vide, le curseur se trouve au début de la ligne suivant
celle de l’état initial. }

Modifier la réalisation de l’action AfChaîne1 pour en déduire celle de AfChaîne2 entraîne une
solution fausse qui serait, pour la version 1 par exemple :

AfChaîne2(T) :
si non EstVide ?(T) alors

AfCar(premier(T)) ; AfChaîne2(fin(T)) ; ALaLigne
sinon ALaLigne

Cette solution est incorrecte car elle engendre autant de ALaLigne que d’appels récursifs, alors
qu’on ne veut qu’un seul ALaLigne à la fin du texte.
La solution correcte est d’utiliser l’action AfChaîne1 :

AfChaîne2(T) :
AfChaîne1(T) ; ALaLigne

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

7.7

UGA, UFR IM2AG, Algorithmique, langages et programmation Réalisation récursive d’une action

c) Traitement récursif de listes chaînées

Le traitement récursif d’une séquence est décrit en termes du même traitement portant sur la
séquence de fin (la séquence donnée sans son premier élément).
Lorsqu’une séquence représentée sous forme de liste chaînée est en paramètre d’une action,
l’adresse d’un élément E d’une séquence S donne accès à la sous-séquence de S commençant en
E et se terminant par le dernier élément de S.

Exemple E7.4 : Somme des éléments d’une liste chaînée
Réaliser un algorithme récursif de calcul de la somme des éléments d’une liste chaînée d’entiers.

L’analyse récurrente du problème est :

(1) Somme([]) = 0 ; (2) Somme(e◦S) = e+Somme(S)

La réalisation récursive correspondante est :

adCel : type pointeur de Cel
Cel : type <E : entier, Suc : adCel>
Somme : fonction (Z : adCel) −→ entier
T : adCel

Somme(Z) :
retour :

si Z = Nil alors 0
sinon Z↑.E + Somme(Z↑.Suc)

Écrire(Somme(T))

Exemple E7.5 : Sélection des éléments positifs
Construire une séquence formée des entiers strictement positifs d’une séquence d’entiers don-
née. L’ordre initial doit être maintenu.

L’analyse récurrente (fonctionnelle) est :

SélPos : fonction (S : séquence d’entier) −→ séquence d’entier > 0

(1) SélPos([]) = []
(2) SélPos(e◦S) = si e > 0 alors e◦SélPos(S) sinon SélPos(S)

Réalisation récursive, version 1 : Construction des éléments du résultat "de gauche à droite"
(ordre où ils apparaissent dans la donnée).

AdCel : type pointeur de Cel ; Cel : type <E : entier ; Suc : AdCel>

CréerSélPosListe : action (donnée X1 : AdCel ; résultat X2 : AdCel)
{ e.i. : soit s0 la séquence représentée par la liste de tête X1
e.f. : la liste de tête X2 représente SélPos(s0) }

CréerSélPosListe(X1, X2) : { la liste X1 représente s0 }
si X1 = Nil alors X2 ←− Nil { s0 est vide }
sinon si X1↑.E ≤ 0 alors

CréerSélPosListe(X1↑.Suc, X2)
sinon { premier(s0) > 0 }

Allouer(X2) ; X2↑ ←− <X1↑.E, Nil> { création du singleton }
CréerSélPosListe(X1↑.Suc, X2↑.Suc)

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

7.8

UGA, UFR IM2AG, Algorithmique, langages et programmation Réalisation récursive d’une action

Réalisation récursive, version 2 : Construction des éléments du résultat "de droite à gauche"
(inverse de l’ordre dans la donnée)

CréerSélPosListe(X1, X2) : { la liste X1 représente s0 }
Z : AdCel

si X1 = Nil alors X2 ←− Nil { s0 est vide }
sinon CréerSélPosListe(X↑.Suc, X2)

{ la liste de tête X2 représente SélPos(fin(s0) }
si X1↑.E > 0 alors { premier(s0) > 0 }

Allouer(Z) { ajout en tête }
Z↑ ←− <X1↑.E, X2> ; X2 ←− Z

Exemple E7.6 : Suppression des éléments négatifs
Modifier une séquence d’entiers donnée en en supprimant les entiers négatifs.

Version 1 : suppression des éléments "de droite à gauche" (inverse de l’ordre dans la donnée).

AdCel : type pointeur de Cel
Cel : type <E : entier ; Suc : AdCel>

SupprimerNégListe : action (donnée-résultat X : AdCel)
{ e.i. : soit s0 la séquence représentée par la liste d’adresse X
e.f. : la liste d’adresse X représente SélPos(s0) }

SupprimerNégListe(X) : { la liste X représente s0 }
Z : AdCel { peut aussi être déclarée au niveau global }
si X 6= Nil alors

SupprimerNégListe(X↑.Suc)
{ la liste de tête X↑.Suc représente SélPos(fin(s0) }
si X↑.E ≤ 0 alors { premier(s0) ≤ 0 }

Z ←− X ; X ←− X↑.Suc ; libérer(Z) { suppression en tête }

Version 2 : suppression des éléments "de gauche à droite" (ordre où ils apparaissent dans la
donnée)

SupprimerNégListe(X) : { la liste X représente s0 }
Z : AdCel { peut aussi être déclarée au niveau global }
si X 6=Nil alors

si X↑.E ≤ 0 alors { premier(s0) ≤ 0 }
Z ←− X ; X ←− X↑.Suc ; libérer(Z) { suppression en tête }
SupprimerNégListe(X)

sinon SupprimerNégListe(X↑.Suc)

d) Traitement récursif de séquences sous forme contigüe

Dans le cas de séquences représentées sous forme contigüe, une sous-séquence de fin d’une
séquence est représentée par le tableau contenant la séquence, une borne et la longueur de la
sous-séquence considérée. Une variante possible est la déclaration du tableau et des deux bornes
de la sous-séquence. Dans les deux cas, on peut déclarer le tableau comme une variable globale.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

7.9

UGA, UFR IM2AG, Algorithmique, langages et programmation Réalisation récursive d’une action

Exemple E7.7 : Somme des éléments (E7.4 suite)
On reprend l’exemple E7.4 dans le cas d’une séquence sous forme contigüe.

L’analyse récurrente du problème est :

(1) Somme([]) = 0 ; (2) Somme(S•e) = Somme(S)+e

La réalisation récursive correspondante est :

Lmax : constante de type entier > 0
TabE : type tableau sur [1 . . .Lmax] d’entier
Somme : fonction (L : entier sur [0 . . .Lmax], T : TabE) −→ entier
LD : entier sur [0 . . .Lmax], TD : TabE

Somme (L, T) :
retour :

si L = 0 alors 0
sinon Somme(L-1, T) + TL

Écrire(Somme(LD, TD))

Exemple E7.8 : Sélection des éléments positifs (E7.5 suite)
On reprend l’exemple E7.5 dans le cas d’une séquence sous forme contigüe.

L’analyse récurrente (fonctionnelle) est :

SélPos : fonction (S : séquence d’entier) −→ séquence d’entier > 0
(1) SélPos([]) = []
(3) SélPos(S•e) = si e > 0 alors SélPos(S)•e sinon SélPos(S)

La réalisation récursive est la suivante (construction "de gauche à droite" c’est-à-dire dans
l’ordre où ils apparaissent dans la donnée) :

Lmax : constante de type entier > 0 ; TabE : type tableau sur [1. . .Lmax] d’entier
CréerSélPosTab : action (donnée T1 : TabE, L1 : entier sur [0. . .Lmax],

résultat T2 : TabE, L2 : entier sur [0. . .Lmax])
{ e.i. : soit s0 la séquence représentée par <T1, L1>
e.f. : <T2, L2> représente SélPos(s0) }

CréerSélPosTab(T1, L1, T2, L2) : { <T1, L1> représente s0 }
si L1 = 0 alors L2 ←− 0 { s0 est vide }
sinon CréerSélPosTab(T1, L1-1, T2, L2)

{ <T2, L2> représente SélPos(début(s0) }
si T1L1 > 0 alors { dernier(s0) > 0 }

L2 ←− L2 + 1 ; T2L2 ←− T1L1 { ajout en queue }

Exemple E7.9 : Suppression des éléments négatifs (E7.6 suite)
On reprend l’exemple E7.6 dans le cas d’une séquence sous forme contigüe.

On a la réalisation suivante (construction “de gauche à droite”) :

Lmax : constante de type entier > 0 ; TabE : type tableau sur [1. . .Lmax] d’entier
SupprimerNégTab : action (donnée-résultat T : TabE, L : entier sur [0 . . .Lmax])

{ e.i. : soit s0 la séquence représentée par <T, L>
e.f. : <T, L> représente SélPos(s0) }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

7.10

UGA, UFR IM2AG, Algorithmique, langages et programmation Réalisation récursive d’une action

SupprimerNégTab(T, L) : { <T, L> représente s0 }
L1 : entier sur [0. . .Lmax]
si L 6= 0 alors

si TL ≤ 0 alors { dernier(s0) ≤ 0 }
L ←− L - 1 { suppression en queue }
SupprimerNégTab(T, L)

sinon
L1 ←− L-1 ; SupprimerNégTab(T, L1)
TL1+1 ←− TL ; L ←− L1 + 1 { ajout en queue }

C. Exercices
a) Machine d’affichage

E7.10 : Formation d’un texte
On spécifie une action nommée FormerT :

Mot : type séquence de lettres
FormerT : action (donnée SM : séquence de mot ; résultat T : texte)

{ T est le texte formé des mots de SM, dans le même ordre et tel que tout mot sauf le dernier est
suivi d’un espace. Si SM est vide, T est vide. }

On propose la réalisation suivante de cette action :

espace : caractère ’ ’
FormerT(SM, T) :

si EstVide ?(SM) alors T ←− [] (1)
sinon FormerT(fin(SM), T) (2)

T ←− (premier(SM) •espace) & T (3)

— Quelle est la valeur de R après l’exécution de l’appel
FormerT (["voici", "un", "exemple"], R) { R : texte }

— La solution proposée est-elle correcte ? Justifier votre réponse.
— Si la solution est incorrecte, donner un exemple le plus simple possible mettant l’erreur

en évidence, puis proposer une solution récursive correcte.

E7.11 : Un mot et son inverse
Q1. On spécifie une action AfMir :

Mot : type séquence de lettre
AfMir : action (donnée M : Mot)

{ Affiche le mot M suivi de son image miroir, à partir de la position courante du curseur. A l’état
final, le curseur est placé juste après le dernier caractère affiché. Si M est vide, l’action n’a aucun
effet. }

Par exemple : AfMir ("abcde") affiche la chaîne "abcdeedcba" à partir de la position courante
du curseur.
Dans ce qui suit, on fera abstraction de la représentation des textes traités en utilisant des
variables de type Mot manipulées avec les opérateurs généraux définis sur les séquences.

i) Donner une première réalisation de AfMir, fondée sur l’introduction d’une action inter-
médiaire nommée AfChEnvers d’affichage d’un texte "à l’envers" : spécifier cette action
puis l’utiliser pour réaliser l’action AfMir. Terminer en donnant une réalisation récursive
de AfChEnvers.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

7.11

UGA, UFR IM2AG, Algorithmique, langages et programmation Réalisation récursive d’une action

affichage commentaires
A Le ’A’ est en 1ère position de l’écran

B Le ’B’ est en 2ème ligne décalé de 3 positions / au ’A’
C . . .

D Le ’D’ est en quatrième ligne décalé de 3 positions / au ’C’
C . . .

B
A

Le curseur se trouve sur la première position de la première
ligne après le ’A’. Le reste de l’écran est vide.

Figure 7.3 – le mot "ABCD" et son inverse "en triangle"

ii) Donner une deuxième réalisation de AfMir, en la décrivant directement sous forme ré-
cursive.

iii) Que faut-il modifier pour qu’après l’affichage, le curseur se trouve au début de la ligne
suivante ?

Q2. On désire maintenant afficher le mot donné et son inverse à raison d’un caractère par ligne
en structurant l’affichage "en triangle" par des décalages adéquats comme l’illustre la figure 7.3
pour le mot "ABCD". L’affichage est effectué sur un écran vide, la première lettre du mot
apparaissant en première position de la première ligne de l’écran.
Pour obtenir cet affichage, on spécifie l’action AF de la manière suivante :

AF : action (donnée M : Mot)
{ Affiche le mot et son inverse "en triangle" comme illustré par la figure 7.3. État initial : indifférent ;
État final : l’affichage a été réalisé sur un écran vide et le curseur se trouve au début de la ligne
suivant le dernier caractère affiché. Si le mot est vide, l’état de l’écran et du curseur sont inchangés.
Précondition : la longueur du mot donné permet l’affichage attendu (par rapport aux dimensions de
l’écran). }

L’observation de la figure pour un mot non vide m = pc ◦ fm montre que l’on peut la décrire
récursivement, en termes de l’affichage du caractère pc et de la figure associée à fm, à condition
de caractériser la figure non seulement par le mot donné mais aussi par la marge fixant la
position sur leur ligne respective du premier et du dernier caractères affichés. On spécifie ainsi
une nouvelle action AF1 de la manière suivante :

AF1 : action (donnée n : entier ≥ 0, M : Mot non vide)
{ Affiche le mot M et son inverse "en triangle" à partir de la marge n de la ligne courante. Etat
initial : curseur au début d’une ligne, soit L0 ; Etat final : le mot M et son inverse "en triangle" ont été
ajoutés à l’écran à partir de la ligne L0 , le premier et le dernier caractère étant affichés en position n ;
le curseur se trouve au début de la ligne suivant le dernier caractère affiché. Précondition : la valeur
de la marge n et la longueur du mot M permettent l’affichage attendu (par rapport aux dimensions
de l’écran). }

i) Réaliser l’action AF en termes de l’action AF1.
ii) Donner une réalisation récursive de l’action AF1.
iii) Analyse quantitative : donner le nombre d’appels de l’action AlaLigne engendrés par un

appel de l’action AF.
iv) Prouver par récurrence la correction de la réalisation proposée.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

7.12

UGA, UFR IM2AG, Algorithmique, langages et programmation Réalisation récursive d’une action

v) Reprendre le problème pour réaliser l’affichage suivant (cas du mot "ABCD") :
A

B
C

D
C

B
A

b) Dessins récursifs

On utilise la machine-tracés définie au §2.D.

E7.12 : Trace de l’exécution d’une action réalisée récursivement
Observer l’exécution de l’action récursive Tcaremb de tracé de carrés emboîtés :

— Donner la trace de l’exécution de l’algorithme Vider ; Baisser ; Tcaremb (4, 4) sous forme
de la liste des appels engendrés, mise en page avec une indentation reflétant la structure
emboîtée des appels récursifs (voir la trace de AfBin1(13) au paragraphe 7.A.a)).

— Spécifier une action qui produit cette trace (procéder par analogie avec l’exercice E7.11
Q2). Réaliser cette action sous forme récursive.

E7.13 : Arbres binaires
On veut réaliser une action de tracé d’un arbre binaire. Les données sont la profondeur de
l’arbre, le point origine, la taille et le cap du tronc. On dit que la profondeur de l’arbre est le
nombre d’arcs sur un chemin de longueur maximale conduisant de la racine à une feuille. La
figure 7.4 montre un arbre de profondeur 1 et un arbre de profondeur 4.

Prof = 1 Prof = 4

O 3 O 3
1,5

0,75
0,375

Figure 7.4 – Arbre binaire

Q1. Schématiser par un dessin la définition récurrente de la figure de profondeur P, d’origine O,
de taille t et de cap C, en termes des figures correspondant aux sous-arbres. Faire apparaître sur
le dessin le point O’ origine des sous-arbres et donner les autres caractéristiques des sous-arbres
en fonction de P, t et C.

Q2. L’action de tracé est spécifiée comme suit :
TracerAB : action (donnée P : entier ≥ 1, T : réel > 0)

{ Trace l’arbre binaire de profondeur P et de taille T dont l’origine et le cap sont fixés par la position
initiale de la plume. Etat initial : plume basse à l’origine de l’arbre et au cap de l’arbre. Etat final :
l’arbre binaire a été ajouté à l’écran et la plume est dans l’état initial. }

Donner l’appel de l’action TracerAB permettant de tracer l’arbre de profondeur 4 de la figure 7.4.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

7.13

UGA, UFR IM2AG, Algorithmique, langages et programmation Réalisation récursive d’une action

Q3. On propose l’ébauche suivante pour la réalisation récursive de l’action TracerAB :

TracerAB(P, T) :
si P = 1 alors

••••
sinon

••••
TracerAB(••••)
••••

TracerAB(••••)
••••

••••

— Compléter cette réalisation récursive.
— Dessiner l’arbre des appels récursifs engendrés par l’appel permettant de tracer l’arbre

de profondeur 4 de la figure 7.4.
— Donner le nombre d’appels récursifs engendrés par un appel de TracerAB pour un arbre

de profondeur P.
— Modifier la réalisation précédente de manière à produire un dessin dans lequel deux

niveaux successifs de l’arbre sont de couleur différentes. On utilisera la primitive Colorier
de la machine tracé spécifiée de la façon suivante :

Colorier : action (donnée c : Couleur)
{ c est une couleur dans Bleu, Vert, Rouge, Jaune, Noir ; e.i. : indifférent ; e.f. : CouleurEcr
= c où CouleurEcr est la couleur de tracé de la plume. }

E7.14 : Flocons
On étudie une action de tracé de dessins de la famille donnée par la figure 7.5. Les données
sont la taille du trait élémentaire et le nombre de niveaux.
Cette action est définie comme suit :

TracerF : action (donnée n : entier ≥ 0, t : réel > 0)
{ Trace un flocon de n niveaux et dont le trait élémentaire est de taille t. L’origine du tracé et son
cap sont donnés par l’état initial. Le reste de l’écran est inchangé. À l’état initial, la plume est basse, à
l’origine et au cap du dessin ; à l’état final, la figure est tracée, la plume est basse, au cap initial et elle
est translatée, par rapport au point initial, de t*3n selon ce cap. }

Donner une réalisation récursive de cette action.

n = 0 n = 1

n = 2

Figure 7.5 – Flocons

E7.15 : Etoiles
L’objet de cet exercice est de construire un algorithme de tracé d’un dessin récursif formé
d’étoiles à cinq branches, comme l’illustrent les deux figures 7.6 et 7.7.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

7.14

UGA, UFR IM2AG, Algorithmique, langages et programmation Réalisation récursive d’une action

S

T

Figure 7.6 – Etoiles à cinq branches

Q1. Tracé d’une étoile à cinq branches
On spécifie une action de tracé d’une étoile à cinq branches comme celle de la figure 7.6. Une
telle étoile est caractérisée par :

— son sommet (S sur la figure 7.6) : c’est l’un des sommets (points extrêmes) de l’étoile
— sa taille (T sur la figure 7.6) : c’est la taille commune de tous les segments reliant deux

sommets de l’étoile
— son cap (marqué par un vecteur sur la figure 7.6) : c’est le cap de l’un des segments

passant par le sommet de l’étoile, et tel qu’un observateur placé au sommet et regardant
dans le sens défini par ce cap, voit l’autre extrémité du segment devant lui et le deuxième
segment passant par le sommet à sa droite. On propose l’action suivante :

TracerUneEtoile : action (donnée T : réel)
{ S et C étant respectivement la position et le cap de la plume à l’appel de l’action, trace une étoile
de taille T, de sommet S et de cap C. }

TracerUneEtoile (T) :
A : constante 720/5 de type entier
Répéter 5 fois

Avancer (T) ; TournerDroite (A)

Compléter la spécification de l’action TracerUneEtoile en ce qui concerne l’état de la plume

Q2. Une explosion d’étoiles
On veut maintenant tracer les dessins récursifs composés d’étoiles comme ceux donnés dans la
figure 7.7.
Un tel dessin est caractérisé par :

— son ordre, comme le suggèrent les figures : la figure d’ordre 1 comporte une étoile, la
figure d’ordre 2 comporte une étoile de taille T et cinq étoiles de taille T/3, placées à
chacun de ses sommets, ...

— son sommet, sa taille, son cap : ce sont le sommet, la taille et le cap de l’étoile la plus
grande

On spécifie une action de tracé d’un tel dessin comme suit :

TracerDEtoiles : action (donnée n : entier > 0, T : réel)
{ à l’état initial, la plume est basse au sommet et au cap de la figure ; à l’état final, la figure de taille T
et d’ordre n est tracée ; la plume est dans l’état initial. }

Donner une réalisation récursive de cette action.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

7.15

UGA, UFR IM2AG, Algorithmique, langages et programmation Réalisation récursive d’une action

n = 1 n = 2 n = 3

Figure 7.7 – Tracé d’étoiles récursif

E7.16 : Tricot (E2.21 suite)
On considère un triangle équilatéral pavé de triangles équilatéraux élémentaires (comme à
l’exercice E2.21). Le dessin est caractérisé par un sommet du triangle extérieur, un cap, la
taille du côté du triangle extérieur et le nombre n de divisions en traits élémentaires du côté
du triangle extérieur (n est une puissance de 2).

n=4n=1 n=2

Figure 7.8 – Tricot

Pour tracer un tel dessin, on définit une action Ttriangles. Pour la réaliser, on peut envisager
deux solutions :
(i) Solution 1
On décompose la figure en distinguant le triangle extérieur et l’intérieur de la figure. La figure
intérieure doit être analysée récursivement. On peut la voir comme suggéré figure 7.9 (le point
P et le cap apparaissant sur la figure illustrent l’état initial et l’état final de la plume). Elle
n’existe que pour n > 1.

P

Figure 7.9 – Tricot : analyse de la figure intérieure, solution 1

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

7.16

UGA, UFR IM2AG, Algorithmique, langages et programmation Réalisation récursive d’une action

On introduit une action intermédiaire TFigInt(n, T) qui trace l’intérieur de la figure d’ordre n
et de taille T.
L’action Ttriangles est alors réalisée en trois étapes : tracé d’une partie du triangle extérieur
délimitée par un point de connexion avec la figure intérieure (par exemple, le point P sur la
figure 7.9) ; appel de TFigInt ; tracé de la fin du triangle extérieur.
L’action TFigInt est réalisée de manière récursive, en remarquant qu’elle est composée d’un
triangle (apparaissant en blanc sur la figure 7.9) et de 4 exemplaires de figures intérieures
(apparaissant en noir). Dans le cas général la réalisation de TFigInt est ainsi formée de 4 appels
récursifs séparés par les instructions traçant le triangle.

— Donner la réalisation récursive de TFigInt.
— Donner la réalisation de Ttriangles en termes de TFigInt.

(ii) Solution 2
Comme pour la solution 1, on introduit une action intermédiaire TFig(n, T, sens) qui trace la
figure d’ordre n et de taille T, sauf deux cotés extérieurs, comme l’illustre la figure 7.10. Le
paramètre sens indique si la figure tracée se trouve à gauche (sens = 1) ou à droite (sens = -1)
par rapport au cap initial.

� � �

� � �

� � �

� � �

� � �

� � �

5

2

P1 P2

1

3

4

Figure 7.10 – Tricot : analyse de la figure intérieure, solution 2

La réalisation de l’action Ttriangles est alors :

Ttriangles(n, T) :
TFig(n, T, 1)
TournerGauche(120) ; Avancer(T) ; TournerGauche(120)
Avancer(T) ; TournerGauche(120)

Donner la réalisation récursive de l’action TFig.
Attention : à l’instruction TournerGauche(A) lorsque sens = 1 correspond l’instruction
TournerDroite(A) ou l’instruction TournerGauche(-A) lorsque sens = -1.

c) Traitement récursif de listes chaînées

E7.17 : Répartition des éléments d’une liste en deux listes
On étudie un algorithme de répartition des éléments d’une séquence S en deux séquences selon
leur signe. Les séquences d’entiers sont représentées par des listes chaînées sous forme standard.
On spécifie une action nommée Répartir :

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

7.17

UGA, UFR IM2AG, Algorithmique, langages et programmation Réalisation récursive d’une action

adCelE : type pointeur de CelE ; CelE : type <E : entier, Esuiv : adCelE>
Répartir : action (donnée-résultat TS : adCelE ; résultat TP, TN : adCelE)

{ soit S la séquence représentée par la liste d’adresse TS.
À l’état final :

— la liste de tête TP représente la séquence des entiers strictement positifs de S ;
— la liste de tête TN représente la séquence des entiers négatifs ou nuls de S ;
— TS = Nil.

L’algorithme procède par modification des liens de chaînage : à l’état final, les cellules des listes de
têtes TP et TN sont celles données à l’état initial dans la liste de tête TS. }

L’algorithme doit être réalisé récursivement. Pour cela, on s’appuie sur l’analyse fonctionnelle
suivante :

Répartition : fonction (S : séquence d’entier) −→ séquence d’entier, séquence d’entier
{ soit <P,N> = Répartition(S) : P est la séquence des entiers strictement positifs de S et N est la
séquence des entiers négatifs ou nuls de S. }

(1) Répartition([]) = < [], []>
(2) Répartition(e◦S) = soit <P, N> = Répartition(S)

dans si e > 0 alors <e◦P, N> sinon <P, e◦N>

(i) Version 1
Le principe choisi est le suivant : répartir la fin de la liste donnée (tout sauf son premier élément)
en deux listes, puis placer le premier élément dans l’une de ces deux listes selon son signe.

— Compléter l’ébauche suivante de la réalisation récursive de l’action Répartir :
Répartir(TS, TP, TN) :

si TS = Nil alors
••••••••••••

sinon Répartir(••••••••••••)
si TS↑.E > 0 alors
••••••••••••

sinon ••••••••••••
••••••••••••

— Dans quel ordre se trouvent les éléments des listes résultant de l’exécution de l’action
Répartir (par rapport à l’ordre dans la liste donnée) ? Justifier la réponse par rapport à
la réalisation donnée.

(ii) Version 2
Le principe choisi est le suivant : placer le premier élément de S dans la bonne liste selon son
signe, puis répartir la liste de fin de S.

— Donner une réalisation récursive de l’action Répartir correspondant à ce principe.
— Dans quel ordre se trouvent les éléments des listes résultant de l’exécution de l’action

Répartir (par rapport à l’ordre dans la liste donnée) ? Justifier la réponse par rapport à
votre réalisation.

E7.18 : Opérations sur des séquences triées
On considère des séquences d’entiers triées, sous forme chaînée selon le lexique suivant :

adCelEnt : type pointeur de CelEnt ; CelEnt : type <E : entier, Suc : adCelEnt>

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

7.18

UGA, UFR IM2AG, Algorithmique, langages et programmation Réalisation récursive d’une action

Pour chacune des opérations suivantes :
— proposer une analyse récurrente en termes fonctionnels et en faisant abstraction de la

représentation ;
— donner une réalisation récursive ;
— donner une réalisation itérative.

Q1. Appartenance

ApListe : fonction (E : entier, T : adCelEnt) −→ booléen
{ vrai ⇐⇒ E ∈ la séquence triée donnée par la liste de tête T }

Q2. Insertion

InsListe : action (donnée E : entier, donnée-résultat T : adCelEnt)
{ Insère un élément de valeur E dans la liste triée de tête T. Si à l’état initial la liste contient un ou
plusieurs éléments de valeur E, à l’état final le nouvel élément de valeur E se trouve après les autres.
A l’état final, la liste de tête T est triée. }

Q3. Suppression

SupListe : action (donnée E : entier, donnée-résultat T : adCelEnt)
{ Supprime tous les éléments de valeur E dans la liste triée de tête T ; si à l’état initial la liste ne
contient pas d’élément de valeur E, à l’état final elle est inchangée. A l’état final, la liste de tête T
est triée. }

Q4. Reprendre les questions précédentes dans le cas de séquences sous forme contigüe.

d) Un algorithme de tri

E7.19 : Tri par interclassement
On considère un tableau T d’entiers défini sur l’intervalle [1. . .n]. Réaliser un algorithme de
tri selon le principe suivant : on découpe le tableau en deux sous-tableaux de longueur égale
(à 1 près). Chaque sous-tableau est trié indépendamment. On interclasse ensuite les deux
sous-tableaux.

On prend en compte la représentation de la séquence sous forme d’un tableau. Les sous-tableaux
sont caractérisés par leurs bornes. Le découpage est un calcul d’indice. On fixe le lexique suivant :

n : constante de type entier > 0
indice : type entier sur [1. . .n]
T : tableau sur [1. . .n] d’entier
sous-tableau : type <bi, bs : indice>

{ si bi > bs, le sous-tableau considéré est vide }

TrierItc : action (donnée <inf, sup> : sous-tableau)
{ Trie, par interclassement, le sous-tableau Tinf. . .sup. les autres parties du tableau T ne sont pas
modifiées }

Interclasser : action (donnée <i1, s1>, <i2, s2> : sous-tableau)
{ Ordonne le sous-tableau Ti1. . .s2 sachant que les sous-tableaux Ti1. . .s1 et Ti2. . .s2 sont triés et
qu’ils sont adjacents : s1=i2-1 }

Le tri du tableau T est réalisé par l’appel : TrierItc (<1, n>).
On propose la réalisation récursive suivante de l’action de tri :

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

7.19

UGA, UFR IM2AG, Algorithmique, langages et programmation Réalisation récursive d’une action

TrierItc (<inf, sup>) : { réalisation récursive }
m : un indice
si inf < sup alors

m ←− (inf + sup) quotient 2 { 1≤inf<sup≤n =⇒ 1≤m<sup }
TrierItc (<inf, m>) ; TrierItc (<m+1, sup>)
Interclasser (<inf, m>, <m+1, sup>)

On suppose que T comporte les 8 éléments suivants :

T= [310, 285, 179, 652, 351, 423, 861, 254] , n = 8

— Dessiner l’arbre des appels récursifs engendrés par l’appel initial TrierItc (<1, 8>).
Chaque noeud de l’arbre est étiqueté par les bornes du sous-tableau concerné par l’appel
récursif.

— Donner l’arbre des appels successifs de l’action Interclasser engendrés par l’appel
TrierItc (<1, 8>) et les états correspondants du tableau T.

— Si, comme dans cet exemple, n est une puissance de 2, évaluer les nombres d’appels de
TrierItc et de Interclasser engendrés par l’appel initial.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

7.20

UGA, UFR IM2AG, Algorithmique, langages et programmation Représentation chaînée des arbres

8. Représentation chaînée des arbres
A. Éléments de cours
a) Représentation chaînée des arbres binaires

Comme pour les listes chaînées (voir chapitre 4), l’espace mémoire peut être représenté dans un
tableau ou à l’aide de pointeurs. Les lexiques donnés ci-dessous correspondent à cette deuxième
possibilité. Pour gérer cet espace, on utilise les primitives MémoireSaturée, Allouer et Li-
bérer.

a.1. Principe de la représentation

À chaque élément de l’arbre est associée une adresse de nœud comportant un triplet <étiquette
du nœud, lien vers le nœud racine du sous-arbre gauche, lien vers le nœud racine du sous-arbre
droit>. Nil caractérise l’arbre vide.

Élément : type { type des éléments de l’arbre }
adNoeud : type pointeur de Noeud { adresses des cellules }
Noeud : type <R : Élément ; G, D : adNoeud >

{ Étiquette du nœud et adresses (éventuellement Nil) des fils gauche et droit. }
{ Un arbre binaire est accessible par l’adresse de sa racine. L’arbre vide a pour adresse Nil. }

Une adresse de type adNoeud permet d’accéder aussi bien à l’information portée par ce nœud
qu’à l’arbre dont ce nœud est racine.

a.2. Principe d’analyse récurrente

De manière générale, le traitement d’un arbre binaire est ramené au traitement de sa racine et
au traitement de chacun de ses sous-arbres (voir chapitre 6).

a.3. Traitement séquentiel d’un arbre binaire : schémas récursifs

Ces schémas correspondent aux problèmes que l’on peut reformuler comme un parcours ou une
recherche (au sens donné pour les séquences, voir chapitre 4) sur une séquence des éléments
de l’arbre. L’ordre entre les éléments est choisi en fonction du problème parmi les suivants
(voir chapitre 6) : préordre (racine, sous-arbre gauche, sous-arbre droit), ordre symétrique (sous-
arbre gauche, racine, sous-arbre droit) ou ordre terminal (sous-arbre gauche, sous-arbre droit,
racine).
Dans le cas d’un parcours, le traitement est décrit par un lexique comportant les variables
propres à ce traitement et par les actions de traitement élémentaire (nommée Traiter) et d’ini-
tialisation (nommée InitTraitement). Une recherche est spécifiée par la propriété caractérisant
l’élément cherché. Dans les deux cas, les schémas récursifs engendrent les traitements (visite ou
test de la propriété) dans l’ordre adéquat.
La Figure 8.1 ci-dessous donne trois schémas : parcours en préordre, existence d’un élément
vérifiant une propriété donnée, adresse du premier élément vérifiant une propriété en ordre
symétrique.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

8.1

UGA, UFR IM2AG, Algorithmique, langages et programmation Représentation chaînée des arbres

Variante du schéma de parcours :
l’arbre vide est exclu en pré-condition. La ligne "si X 6= Nil alors" disparaît, mais il faut ajouter
le contrôle de cette pré-condition avant les appels récursifs.

Parcours en ordre symétrique ou en ordre terminal
Les réalisations sont analogues à celles données : il suffit de changer l’ordre entre l’appel Traiter
et les appels récursifs portant sur les sous-arbres.

Élément : type { type des éléments de l’arbre }
adNoeud : type pointeur de Noeud
Noeud : type <R : Élément ; G, D : adNoeud >

Parcours en préordre
ParcoursPréordre : action (donnée X : AdNoeud)

{ Application de l’action Traiter à chaque élément de l’arbre binaire, une et une seule fois en
préordre. Action vide si l’arbre est vide. }

ParcoursPréordre(X) :
si X 6= Nil alors

Traiter(X↑.R) ; ParcoursPréordre(X↑.G) ; ParcoursPréordre(X↑.D)
{ Appel pour traiter un arbre binaire d’adresse A : InitTraitement ; ParcoursPréordre(A) }

Existence d’un élément vérifiant P
P : fonction (E : Élément) −→ booléen { caractérise la propriété cherchée }
ExisteP : fonction (X : AdNoeud) −→ booléen

{ vrai ⇐⇒ il existe dans A au moins un élément vérifiant P }
ExisteP(X) :

retour : X 6= Nil et puis (P(X↑.R) ou ExisteP(X↑.G) ou ExisteP(X↑.D))
Adresse du premier élément vérifiant une propriété P (ordre symétrique)

PremierSymSelonP : fonction (X : AdNoeud) −→ AdNoeud
{ Posons Y = PremierSymSelonP(X). S’il existe un élément de X vérifiant P, Y est l’adresse
du premier élément en ordre symétrique de X, qui vérifie P. Sinon Y = Nil. }

PremierSymSelonP(X) :
retour : si X = Nil alors Nil

sinon soit Y = PremierSymSelonP(X↑.G)
dans si Y 6= Nil alors Y

sinon si P(X↑.R) alors X sinon PremierSymSelonP(X↑.D)

Figure 8.1 – Schémas de traitement séquentiel d’un arbre binaire

b) Arbres n-aires et forêts

b.1. Définition récursive

Un arbre n-aire non vide est formé de sa racine et de la forêt de ses sous-arbres :
— <r, F> dénote un arbre n-aire non vide formé d’une racine r et

d’une forêt F de sous-arbres (éventuellement vide) : F est la forêt
des sous-arbres fils de r. F

r

Une forêt est une séquence éventuellement vide d’arbres n-aires non vides.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

8.2

UGA, UFR IM2AG, Algorithmique, langages et programmation Représentation chaînée des arbres

— <r, F1> ◦F2 dénote une forêt formée d’un premier arbre et d’une
forêt d’arbres frères F2, le premier arbre étant formé d’une racine
r et d’une forêt de sous-arbres fils F1.

— [] dénote la forêt vide.

r

F2

F1

b.2. Principe d’analyse récurrente

Le traitement d’un arbre n-aire est ramené au traitement de sa racine et au traitement de
chacun de ses sous-arbres. La réalisation d’une fonction ou d’une action portant sur un arbre
peut être conçue de deux manières :

— sans intermédiaire : les sous-arbres sont traités dans une itération de parcours de la liste
des sous-arbres (un appel récursif par sous-arbre).

— en introduisant une fonction ou une action généralisant le problème posé à une forêt.
Le traitement d’une forêt est ramené au traitement de la racine de son premier arbre et aux
traitements de ses forêts de fils et de frères. La réalisation d’une fonction ou d’une action portant
sur une forêt comporte ainsi deux appels récursifs, l’un pour la forêt des fils et l’autre pour la
forêt des frères.

b.3. Principe de la représentation chaînée des arbres n-aires et des forêts

L’ensemble des fils d’un élément de l’arbre est représenté par une liste chaînée, appelée liste
des frères : le premier élément de cette liste est le fils ainé de l’élément considéré. Le successeur
d’un élément dans sa liste de frères (s’il existe) est le frère cadet de cet élément. De plus, à
tout élément de l’arbre est associée l’adresse de son fils ainé. Ainsi, tout élément d’un arbre
appartient à une liste de fils aînés (profondeur) et à une liste de frères (largeur). Une forêt est
représentée par une liste chaînée d’arbres formant une liste de frères.
À chaque élément de l’arbre est associée une adresse de nœud comportant un triplet <étiquette
du nœud, lien vers le fils ainé ou Nil, lien vers le frère cadet ou Nil> :

Élément : type { type des éléments de l’arbre }
adNoeud : type pointeur de Noeud { adresses des nœuds }
Noeud : type <R : Élément, Fils : adNoeud, Frère : adNoeud >

{ Étiquette de la racine et adresses (éventuellement Nil) du fils aîné et du frère cadet. }
{ Un arbre n-aire est accessible par l’adresse de sa racine. Une forêt est accessible par l’adresse de la
racine de son premier arbre. Nil caractérise l’arbre vide ou la forêt vide. }

b.4. Schémas récursifs de traitement séquentiel d’un arbre n-aire

On raisonne sur une séquence des éléments de l’arbre. L’ordre des éléments dans cette séquence
est choisi en fonction du problème parmi l’un des deux ordres suivants (dits en profondeur
d’abord) : préfixé (racine puis sous-arbres) ou postfixé (sous-arbres puis racine). Dans la Fi-
gure 8.2, on ne donne que le schéma de parcours préfixé : pour le parcours postfixé, il suffit de
déplacer l’appel Traiter(X↑.R) après l’itération de parcours des sous-arbres.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

8.3

UGA, UFR IM2AG, Algorithmique, langages et programmation Représentation chaînée des arbres

Élément : type { type des éléments de l’arbre }
adNoeud : type pointeur de Noeud { adresses des nœuds }
Noeud : type <R : Élément, Fils : adNoeud, Frère : adNoeud >

Parcours préfixé d’un arbre n-aire
ParcoursPréfixéArbre : action (donnée X : AdNoeud)

{ Application de l’action Traiter à chaque élément de l’arbre, une et une seule fois en ordre
préfixé. Pré-condition : arbre non vide }

ParcoursPréfixéArbre(X) : { précondition : X 6= Nil }
AC : adNoeud { pour parcourir la liste des sous-arbres }
Traiter(X↑.R)
AC ←− X↑.Fils
tant que AC 6= Nil

ParcoursPréfixéArbre(AC) ; AC ←− AC↑.Frère
{ Appel pour traiter un arbre d’adresse A : InitTraitement ; si A 6= Nil alors ParcoursPréfixéArbre(A)
}

Existence dans un arbre n-aire d’un élément vérifiant P
P : fonction (E : Élément) −→ booléen { caractérise la propriété cherchée }
ExisteParbre : fonction (X : AdNoeud) −→ booléen

{ vrai ⇐⇒ l’arbre d’adresse X a un élément vérifiant P. }
ExisteParbre(X) :

T : booléen ; AC : adNoeud
si X = Nil alors T ←− faux
sinon si P(X↑.R) alors T ←− vrai

sinon
AC ←− X↑.Fils
tant que AC 6= Nil et puis non ExisteParbre(AC) : AC ←− AC↑.Frère
T ←− AC 6= Nil

retour : T
Adresse du premier élément vérifiant une propriété P (ordre préfixé)

PremierPréfixéArbreSelonP : fonction (X : AdNoeud) −→ AdNoeud
{ Posons Y = PremierPréfixéArbreSelonP(X). S’il existe un élément de X vérifiant P, Y est
l’adresse du premier élément en ordre préfixé de X qui vérifie P. Sinon Y = Nil. Pré-condition :
arbre non vide. }

PremierPréfixéArbreSelonP(X) : { X 6= Nil }
Y : adNoeud ; AC : adNoeud
si P(X↑.R) alors Y ←− X
sinon Y ←− Nil ; AC ←− X↑.Fils

tant que AC 6= Nil et Y = Nil
Y ←− PremierPréfixéArbreSelonP(AC) ; AC ←− AC↑.Frère

retour : Y

Figure 8.2 – Schémas de traitement séquentiel d’un arbre n-aire

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

8.4

UGA, UFR IM2AG, Algorithmique, langages et programmation Représentation chaînée des arbres

b.5. Schémas récursifs de traitement séquentiel d’une forêt

On raisonne sur une séquence des éléments de la forêt en ordre préfixé (premier arbre en ordre
préfixé puis forêt des arbres frères en ordre préfixé) ou en ordre postfixé (premier arbre en ordre
postfixé puis forêt des arbres frères en ordre postfixé). Dans la Figure 8.3, on ne donne que le
schéma de parcours préfixé : pour le parcours postfixé, il suffit de changer les noms des appels
récursifs et de placer le traitement de la racine après le parcours du premier arbre.
On peut décrire le parcours d’un arbre n-aire en termes d’un parcours de forêt. Par exemple le
parcours préfixé d’un arbre n-aire non vide d’adresse A s’écrit :

InitTraitement ; Traiter(AC↑.R) ; ParcoursPréfixéForêt(AC↑.Fils)

Parcours préfixé d’une forêt
ParcoursPréfixéForêt : action (donnée X : AdNoeud)

{ Application de l’action Traiter à chaque élément de la forêt, une et une seule fois en ordre
préfixé ; action vide si la forêt est vide. }

ParcoursPréfixéForêt(X) :
si X 6= Nil alors

Traiter(X↑.R) ; ParcoursPréfixéForêt(X↑.Fils) { 1er arbre }
ParcoursPréfixéForêt(Frère de X↑)

{ Appel pour traiter une forêt d’adresse A : InitTraitement ; ParcoursPréfixéForêt(A) }
Existence dans une forêt d’un élément vérifiant P

P : fonction (E : Élément) −→ booléen { caractérise la propriété cherchée }
ExistePforêt : fonction (X : AdNoeud) −→ booléen

{ vrai ⇐⇒ la forêt d’adresse X a un élément vérifiant P. }
ExistePforêt(X) :

retour : X 6= Nil et puis
(P(X↑.R) ou ExisteP(X↑.Fils) ou ExisteP(X↑.Frère))

Adresse du premier élément d’une forêt vérifiant une propriété P (ordre préfixé)
PremierPréfixéForêtSelonP : fonction (X : AdNoeud) −→ AdNoeud

{ Posons Y = PremierPréfixéForêtSelonP(X). S’il existe un élément de X vérifiant P, Y est
l’adresse du premier élément de X (en préfixé) qui vérifie P. Sinon Y = Nil. }

PremierPréfixéForêtSelonP(X) :
retour : si X = Nil ou alors P(X↑.R) alors X

sinon soit Y = PremierPréfixéForêtSelonP(X↑.Fils)
dans si Y 6= Nil alors Y sinon PremierPréfixéForêtSelonP(X↑.Frère)

Figure 8.3 – Schémas de traitement séquentiel d’une forêt

B. Exemples d’exercices rédigés
a) Arbres binaires sous forme chaînée

Élément : type { type des éléments de l’arbre }
adNoeud : type pointeur de Noeud
Noeud : type <R : Élément ; G, D : adNoeud>

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

8.5

UGA, UFR IM2AG, Algorithmique, langages et programmation Représentation chaînée des arbres

Exemple E8.1 : Création d’un arbre binaire
Construire une copie d’un arbre binaire. Les arbres sont représentés sous forme chaînée.

A : adNoeud { donnée : adresse de l’arbre considéré }
CopieDeA : adNoeud { résultat : adresse de l’arbre construit }
CopierArbreBin : action (donnée X : adNoeud ; résultat Y : adNoeud)

{ Construit une copie de l’arbre d’adresse X et fournit son adresse dans Y. }
{ Recopie de l’arbre donné }

CopierArbreBin(A, CopieDeA)

{ Réalisation de CopierArbreBin }
{ Recopier un arbre, c’est construire le nœud racine du nouvel arbre, puis recopier les sous-arbres
(préordre). }
CopierArbreBin(X, Y) :

si X = Nil alors Y ←− Nil
sinon Allouer(Y) ; Y↑.R ←− X↑.R

CopierArbreBin(X↑.G, Y↑.G) ; CopierArbreBin(X↑.D, Y↑.D)

Exemple E8.2 : Libération d’un arbre binaire
Restituer à la mémoire libre tous les nœuds d’un arbre binaire.

A : adNoeud { donnée : adresse de l’arbre considéré }
LibérerArbreBin : action (donnée-résultat X : adNoeud)

{ Restitue à la mémoire libre tous les nœuds de l’arbre d’adresse X. A l’état final, X=Nil. }

{ Libération de l’arbre donné }
LibérerArbreBin(A)

{ Réalisation de LibérerArbreBin }
{ Libérer un arbre, c’est libérer les sous-arbres de la racine, puis libérer la racine (ordre terminal). }
LibérerArbreBin(X) :

si X 6= Nil alors
LibérerArbreBin(X↑.G) ; LibérerArbreBin(X↑.D)
Libérer(X) ; X ←− Nil

b) Arbres n-aires et forêts

Élément : type { type des éléments de l’arbre }
adNoeud : type pointeur de Noeud
Noeud : type <R : Élément ; Fils, Frère : adNoeud>

Exemple E8.3 : Nombre d’éléments positifs
Déterminer le nombre d’éléments strictement positifs d’un arbre n-aire d’entiers.

Élément : type entier
NbPosArbre : fonction (A : adNoeud) −→ entier ≥ 0

{ Nombre d’éléments > 0 de l’arbre d’adresse A. }

On illustre dans cet exemple diverses manières d’aborder un problème de traitement d’arbre
n-aire.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

8.6

UGA, UFR IM2AG, Algorithmique, langages et programmation Représentation chaînée des arbres

(i) Approche 1 : analyse récurrente
Le nombre d’éléments positifs d’un arbre non vide est le nombre des éléments positifs de chacun
des sous-arbres fils, plus 1 si la racine est positive.

Version 1 : solution directe (itération sur les sous-arbres)

NbPosArbre(A) :
N : entier ≥ 0 { pour construire le résultat }
AC : adNoeud { pour parcourir la liste des sous-arbres }
si A = Nil alors N ←− 0
sinon N ←− (si A↑.R > 0 alors 1 sinon 0) ; AC ←− A↑.Fils

tant que AC 6= Nil
N ←− N + NbPosArbre(AC)
AC ←− AC↑.Frère

retour : N

Remarque : le cas A = Nil n’est pertinent que pour l’appel initial. En effet, dans le corps de
l’itération on sait que AC 6= Nil. Une alternative est de spécifier NbPosArbre(A) avec A 6=
Nil pour pré-condition, le cas A= Nil étant traité lors de l’appel initial.
Cette remarque est valable pour tout problème d’arbre traité selon cette approche.

Version 2 : généralisation du problème à une forêt
On spécifie le problème pour une forêt :

NbPosForêt : fonction (F : adNoeud) −→ entier ≥ 0
{ Nombre d’éléments strictement positifs de la forêt d’adresse F. }

{ Réalisation de NbPosArbre. }
NbPosArbre(A) :

retour : si A = Nil alors 0 sinon (si A↑.R > 0 alors 1 sinon 0) + NbPosForêt(A↑.Fils)
{ Réalisation de NbPosForêt }

NbPosForêt(F) :
retour : si F = Nil alors 0

sinon (si F↑.R > 0 alors 1 sinon 0) + NbPosForêt(F↑.Fils) { 1erarbre }
+ NbPosForêt(F↑.Frère))

Remarques : si l’on sait a priori que A 6= Nil ⇒ A↑.Frère = Nil, on peut écrire :

NbPosArbre(A) :
retour : NbPosForêt(A)

Par ailleurs, NbPosForêt peut aussi être réalisée sous forme d’une itération de parcours de
(la séquence des arbres de) la forêt dans laquelle chaque arbre est traité par NbPosArbre
(récursivité "croisée").
Ces remarques sont valables pour tout problème d’arbre traité selon cette approche.

(ii) Approche 2 : traitement séquentiel, application d’un schéma de parcours
Il s’agit d’incrémenter un compteur (initialisé à 0) pour chaque élément positif de l’arbre. Il
suffit donc d’appliquer un schéma de parcours d’un arbre ou d’une forêt.

Version 1 : parcours préfixé de l’arbre

Compteur : entier ≥ 0
AjouterNbPosArbre : action (donnée X : adNoeud)

{ Ajoute à Compteur le nombre d’éléments strictement positifs de l’arbre d’adresse X. Pré-condition :
X 6= Nil. }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

8.7

UGA, UFR IM2AG, Algorithmique, langages et programmation Représentation chaînée des arbres

{ Réalisation de NbPosArbre. }
NbPosArbre(A) :

Compteur ←− 0 { InitTraitement }
si A 6= Nil alors AjouterNbPosArbre(A)
retour : Compteur

{ Réalisation de AjouterNbPosArbre : application du schéma de parcours préfixé d’un arbre. }
AjouterNbPosArbre(X) : { X 6= Nil }

AC : adNoeud { pour parcourir la liste des sous-arbres }
si X↑.R > 0 alors Compteur ←− Compteur +1 { Traiter }
AC ←− X↑.Fils
tant que AC 6= Nil

AjouterNbPosArbre(AC) ; AC ←− AC↑.Frère

Version 2 : parcours préfixé de la forêt des sous-arbres

Compteur : entier ≥ 0
AjouterNbPosForêt : action (donnée X : adNoeud)

{ AjouterNbPosForêt(X) ajoute à Compteur le nombre d’éléments strictement positifs de la forêt
d’adresse X. }

{ Réalisation de NbPosArbre. }
NbPosArbre(A) :

Compteur ←− 0 { InitTraitement }
si A 6= Nil alors

si A↑.R > 0 alors Compteur ←− 1
AjouterNbPosForêt(A↑.Fils)

retour : Compteur
{ Réalisation de AjouterNbPosForêt : application du schéma de parcours préfixé d’une forêt. }

AjouterNbPosForêt(X) :
si X 6= Nil alors

si X↑.R > 0 alors Compteur ←− Compteur +1 { Traiter }
AjouterNbPosForêt(X↑.Fils) ; AjouterNbPosForêt(X↑.Frère)

Exemple E8.4 : Nombre de nœuds de niveau n dans un arbre n-aire
Déterminer le nombre de nœuds de niveau n dans un arbre n-aire non vide.

NbNivArbre : fonction (A : adNoeud, n : entier > 0) −→ entier ≥ 0
{ Nombre de nœuds de niveau n dans l’arbre d’adresse A.
Pré-condition : A 6= Nil }

La racine est le seul nœud de niveau 1. Les nœuds de niveau n+1 dans un arbre A sont ceux
de niveau n dans les sous-arbres de A.
Version 1 : solution directe

NbNivArbre(A, n) : { A 6= Nil }
Nb : entier ≥ 0 { pour construire le résultat }
AC : adNoeud { pour parcourir la liste des sous-arbres }
si n = 1 alors Nb ←− 1
sinon Nb ←− 0 ; AC ←− AC↑.Fils

tant que AC 6= Nil
Nb ←− Nb + NbNivArbre(AC, n-1) ; AC ←− AC↑.Frère

retour : Nb

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

8.8

UGA, UFR IM2AG, Algorithmique, langages et programmation Représentation chaînée des arbres

Version 2 : généralisation à une forêt

NbNivForêt : fonction (F : adNoeud, n : entier > 0) −→ entier ≥ 0
{ Nombre de nœuds de niveau n dans la forêt d’adresse F. }

{ réalisation de NbNivArbre }
NbNivArbre(A, n) :

retour : si n = 1 alors 1 sinon NbNivForêt(AC↑.Fils, n-1)
{ réalisation de NbNivForêt }

NbNivForêt(F, n) :
retour : si F = Nil alors 0

sinon (si n = 1 alors 1 sinon NbNivForêt(F↑.Fils, n-1)) { 1erarbre }
+ NbNivForêt(F↑.Frère, n) { forêt des frères }

c) Arbres n-aires, forêts et séquences sous forme chaînée

Exemple E8.5 : Liste préfixée des éléments d’une forêt
Construire la liste préfixée des éléments d’une forêt. La forêt et la liste sont sous forme chaînée.

Élément : type
adCel : type pointeur de Cel ; Cel : type <Elt : Élément, Suc : adCel>
adNoeud : type pointeur de Noeud
Noeud : type <R : Élément ; Fils, Frère : adNoeud>
CréerLPréForêt : action (donnée F : adNoeud, résultat L : adCel)

{ Construit la liste préfixée des éléments de la forêt d’adresse F et fournit son adresse de tête dans
L. }

Version 1 : analyse récurrente
Si la forêt est vide, la liste est vide. Sinon elle comporte la racine du premier arbre, puis la liste
préfixée de la forêt des sous-arbres du premier arbre, puis la liste préfixée de la forêt des frères.

Der : fonction (T : adCel) −→ adCel
{ Adresse du dernier élément de la liste d’adresse T. Pré-condition : T 6= Nil. }

{ Réalisation de CréerLPforêt }
CréerLPréForêt(F, L) :

si F = Nil alors L ←− Nil
sinon Allouer(L) ; L↑.Elt ←− F↑.R

CréerLPréForêt(F↑.Fils, L↑.Suc)
CréerLPréForêt(F↑.Frère, Der(L)↑.Suc)

Version 2 : traitement séquentiel
Dans un parcours préfixé de la forêt, on ajoute l’élément courant en queue de la liste en cours
de création. La liste est initialisée par un élément fictif de tête pour éviter le cas particulier du
premier élément. Ce fictif est libéré en fin de création.

ConcaténerLPréForêt : action (donnée X : adNoeud, donnée-résultat Y : adCel)
{ Concatène la liste préfixée des éléments de la forêt d’adresse X, à une liste non vide dont le dernier
élément a Y pour adresse. A l’état final, Y est l’adresse du dernier élément de la liste ainsi modifiée.
}

{ Réalisation de CréerLPréForêt }
CréerLPréForêt(F, L) :

Q : adCel { adresse du dernier élément de la liste en cours de création }
Fic : adCel { adresse de l’élément fictif }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

8.9

UGA, UFR IM2AG, Algorithmique, langages et programmation Représentation chaînée des arbres

Allouer(Fic) ; Q ←− Fic { InitTraitement : création du fictif de tête }
ConcaténerLPréForêt(F, Q)
Q↑.Suc ←− Nil ; L ←− Fic↑.Suc
Libérer(Fic) { libération du fictif de tête }

{ Réalisation de ConcaténerLPréForêt : parcours préfixé de la forêt }
ConcaténerLPréForêt(X, Y) :

Z : adCel { pour construire un nouvel élément }
si X 6= Nil alors

Allouer(Z) ; Z↑.Elt ←− X↑.R ; Y↑.Suc ←− Z ; Y ←− Z { ajout en queue }
ConcaténerLPréForêt(X↑.Fils, Y) ; ConcaténerLPréForêt(X↑.Frère, Y)

C. Exercices
a) Arbres binaires

E8.6 : Parcours d’arbres binaires
(i) Expérimentation sur un exemple :
Dessiner un arbre binaire de 8 entiers et les listes de ses éléments, en préordre, en ordre symé-
trique et en ordre terminal.

(ii) Caractérisation d’un arbre binaire
— Deux arbres binaires différents peuvent avoir la même liste en préordre : donner un

exemple, le plus simple possible, illustrant cette propriété. Sur cet exemple, vérifier que
les listes en ordre symétrique sont différentes.

— Donner un principe récursif de construction d’un arbre binaire à partir des listes de ses
éléments en préordre et en ordre symétrique.

— Examiner les deux autres combinaisons : préordre, terminal ; symétrique, terminal.

E8.7 : Arbres symétriques (E6.12 suite)
Le symétrique d’un arbre binaire A est un arbre binaire déduit de A en faisant correspondre un
sous-arbre gauche à tout sous-arbre droit et vice versa (B est l’image miroir de A). Les arbres
sont représentés sous forme chaînée.
(i) Construction du symétrique

— Spécifier et réaliser une action nommée CréerSymétrique qui construit le symétrique
d’un arbre binaire.

(ii) Remplacement par le symétrique
— Spécifier et réaliser une action nommée RemplacerParSymétrique qui modifie un

arbre binaire de telle sorte que sa valeur à l’état final soit le symétrique de sa valeur à
l’état initial.

E8.8 : Suppression des feuilles d’un arbre binaire
On étudie la suppression des feuilles d’un arbre dans diverses conditions de réalisation. Par
exemple, dans la Figure 8.4, l’arbre B est obtenu en supprimant les feuilles de l’arbre A.
(i) Etude fonctionnelle abstraite
On fait ici abstraction de la représentation des arbres en utilisant les opérations sur les valeurs
de type arbre binaire (/\, /x, y, z\, EstVide ?, Racine, Gauche, Droit).
On spécifie une fonction nommée SansF :

SansF : fonction (A : arbre binaire d’entier) −→ arbre binaire d’entier
{ Arbre obtenu à partir de A en supprimant ses feuilles. SansF(/\) = /\ }

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

8.10

UGA, UFR IM2AG, Algorithmique, langages et programmation Représentation chaînée des arbres

arbre A arbre B

A

B

D E

C

A

H

F G

B C

D

Figure 8.4 – suppression des feuilles d’un arbre

— Donner des équations de récurrence définissant la fonction SansF.
— Donner une réalisation récursive de la fonction SansF.

(ii) Réalisation pour une représentation chaînée
On spécifie l’action suivante :

adNoeud : type pointeur de Noeud ; Noeud : type <R : Élément ; G, D : adNoeud >
CopierSansF : action (donnée A : AdNoeud, résultat B : AdNoeud)

{ Construit un arbre dont la valeur est celle de A sans les feuilles, et fournit son adresse dans B. }

— Donner une réalisation de l’action CopierSansF (sur la base des équations définissant
SansF).

(iii) Extraction des feuilles
On veut modifier un arbre binaire A en supprimant ses feuilles. De plus, on veut construire
une liste LF formée des éléments situés sur les feuilles enlevées à l’arbre A. (Figure 8.5).

A

B

D E

C

A

H

F G

B C

D

état initial : arbre A état final : arbre A et liste LF

[F,G,E,H]

Figure 8.5 – extraction des feuilles d’un arbre

Étude fonctionnelle
On spécifie une fonction nommée SansFetLF :

SansFetLF : fonction (A : arbre binaire d’entier) −→ <arbre binaire d’entier, séquence d’entier>
{ posons <A,L> = SansFetLF(A) : A= SansF(A) et L est la séquence des feuilles de A. }

— Compléter les équations suivantes :
(1) SansFetLF(/\) = ••••••••••••

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

8.11

UGA, UFR IM2AG, Algorithmique, langages et programmation Représentation chaînée des arbres

(2) SansFetLF(/G,r,D\) =
si EstVide ?(G) et EstVide ?(D) alors ••••••••••••
sinon soit <Ag, Lg> = SansFetLF(G), <Ad, Ld> = SansFetLF(D)

dans ••••••••••••

Version 1
L’arbre A et la liste LF des feuilles sont sous forme chaînée standard. Aucun ordre n’est
imposé entre les éléments de LF. Les cellules feuilles de l’arbre initial doivent être restituées à
la mémoire.
On spécifie l’action suivante :

AdCel : type pointeur de Cel ; Cel : type <E : entier ; Suc : AdCel>
ExtraireF : action (donnée-résultat A : adNoeud, résultat L : AdCel)

{ Supprime les feuilles de l’arbre donné de racine A et construit la liste des entiers situés sur ces
feuilles. L’adresse de la liste résultat est fournie dans L. }

— Donner une réalisation de l’action ExtraireF (sur la base des équations définissant
SansFetLF).

Version 2
On spécifie l’action suivante :

ExtraireEtConcatF : action (donnée-résultat A : AdNoeud, L : AdCel)
{ Supprime les feuilles de l’arbre d’adresse A et complète la liste de tête L par les entiers situés sur
ces feuilles. Si l’arbre est vide, la liste L est inchangée. }

— Donner une réalisation de l’action ExtraireEtConcatF.
— Donner une réalisation de l’action ExtraireF en utilisant ExtraireEtConcatF.

b) Arbres n-aires

E8.9 : Parcours d’arbres n-aires

— Dessiner un arbre n-aire A de 12 entiers et les listes de ses éléments en ordre préfixé et
postfixé.

Une interprétation de la représentation chaînée d’un arbre n-aire
— Dessiner la représentation chaînée A’ de l’arbre A choisi ci-dessus.
— Dessiner un arbre binaire B déduit de A’ de la manière suivante : à tout nœud de A’

correspond un nœud de B ayant même valeur d’élément. A tout lien vers un fils aîné
dans A’ correspond un lien vers un fils gauche dans B ; et à tout lien vers un frère cadet
dans A’ correspond un lien vers un fils droit dans B.

— Donner les listes en préordre, ordre symétrique et ordre terminal de l’arbre B (parcours
d’arbre binaire) et les comparer avec les listes obtenues au premier point (parcours
d’arbre n-aire).

— Comparer les algorithmes de parcours portant sur les arbres binaires et sur les arbres
n-aires.

E8.10 : Degré maximum des nœuds d’un arbre ou d’une forêt
Le degré d’un nœud est le nombre de ses fils.
Les arbres n-aires et les forêts sont sous forme chaînée standard.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

8.12

UGA, UFR IM2AG, Algorithmique, langages et programmation Représentation chaînée des arbres

(i) Degré maximum d’un arbre
On spécifie une fonction nommée DegréMaxArbre :

DegréMaxArbre : fonction (X : AdNoeud) −→ entier ≥ 0
{ Degré maximum des nœuds de l’arbre d’adresse X. Pré-condition : X 6= Nil }

— Donner une réalisation récursive directe de la fonction DegréMaxArbre.
— On veut afficher le degré maximum du ième arbre (s’il existe) d’une forêt. Spécifier une

action pour cela et la réaliser en utilisant la fonction DegréMaxArbre.

(ii) Degré maximum d’une forêt
On spécifie une fonction nommée DegréMaxForêt :

DegréMaxForêt : fonction (X : AdNoeud) −→ entier
{ Degré maximum des nœuds de la forêt d’adresse X. Si la forêt est vide, le résultat a la valeur 1. }

— Donner deux réalisations récursives de la fonction DegréMaxForêt : la première en
utilisant la fonction DegréMaxArbre et la seconde sans l’utiliser.

E8.11 : Nombre d’exemplaires de la valeur maximum dans une forêt
On considère des forêts d’entiers strictement positifs sous forme chaînée standard :

AdNoeud : type pointeur de Noeud
Noeud : type <R : entier > 0 ; Fils, Frère : AdNoeud>

On spécifie une action nommée AfficherNbValMaxF :
AfficherNbValMaxF : action (donnée F : AdNoeud)

{ Affiche le nombre d’exemplaires de la valeur maximum dans la forêt d’adresse F. Si la forêt est vide,
la valeur 0 est affichée. }

(i) Version 1 : analyse récurrente portant sur une forêt
On spécifie une fonction nommée MaxEtNbF :

MaxEtNbF : fonction (X : AdNoeud) −→ entier ≥ 0, entier ≥ 0
{ Posons <M, N> = MaxEtNbF(X). M est la valeur maximum dans la forêt d’adresse X et N est le
nombre d’exemplaires de M dans cette forêt. Si X=Nil, M et N ont la valeur 0. }

— Donner une réalisation de l’action AfficherNbValMaxF.
— Compléter la réalisation récursive suivante de la fonction MaxEtNbF :

MaxEtNbForêt(X) :
retour : si X = Nil alors <0, 0>

sinon soit V = X↑.R, <M1, N1> = MaxEtNbF (X↑.Fils),
<M2, N2> = MaxEtNbF (X↑.Frère)

dans ••••••••••••

(ii) Version 2 : application d’un traitement séquentiel
On raisonne sur une liste des éléments de la forêt. Pour réaliser l’action AfficherNbValMaxF,
on définit le lexique global suivant :

ValMax : entier ≥ 0 { valeur maximum courante }
NbValMax : entier ≥ 0 { nombre d’exemplaires courant de la valeur maximum courante }

et on spécifie une action nommée MajMaxEtNb :
MajMaxEtNbF : action (donnée X : AdNoeud)

{ Met à jour les valeurs de ValMax et NbValMax en tenant compte de leur valeur initiale et des
valeurs de la forêt d’adresse X. Si X=Nil, l’action est vide. }

— Donner une réalisation récursive de l’action MajMaxEtNbF.
— Donner une réalisation de l’action AfficherNbValMaxF.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

8.13

UGA, UFR IM2AG, Algorithmique, langages et programmation Représentation chaînée des arbres

D. Problème dirigé : à propos d’arbres n-aires
a) Présentation

On considère un ensemble non vide d’éléments distincts deux à deux structuré en arbre
n-aire. Il s’agit par exemple d’un ensemble de dossiers emboîtés organisé selon la relation "être
un sous-dossier de".

L’arbre considéré est appelé l’arbre principal de manière à le distinguer des sous-arbres qu’il
contient. Sa racine est appelée l’ancêtre.

Chaque nœud de l’arbre est étiqueté par une valeur d’un type Élément. A chaque élément est
associée une date (par exemple sa date de création dans le contexte considéré). Cette date fixe
deux propriétés de l’arbre :

— tout élément de l’arbre a une date antérieure à celle de ses fils ;
— la liste des fils d’un élément est en ordre chronologique selon les dates : le premier fils a

la plus ancienne et le dernier fils a la plus récente. Si deux frères ont la même date, ils
apparaissent dans un ordre quelconque dans cette liste.

L’arbre est représenté sous forme chaînée, comme l’illustre la Figure 8.6 : les lettres figurent des
éléments ; les flèches verticales figurent une relation père −→ fils aîné ; et les flèches horizontales
figurent une relation frère −→ frère cadet.

Sur l’exemple de la figure 8.6, A est l’ancêtre. La liste des fils de E est [L,M,N]. L est le fils
aîné de E. F est le frère cadet de E. F n’a pas de fils. D est le plus récent des fils de A.

A

B

F

M N

V W

L

GE

O P

X Y Z

C

H I

Q R S

D

J K

T U

Figure 8.6 – un exemple d’arbre n-aire

On fixe le lexique suivant :

{ dates }
Date : type { =, 6=, <, >, ≥ dénotent les comparaisons de dates (ordre chronologique). }

{ éléments }
Élément : type

{ =, 6= et ←− dénotent les comparaisons et l’affectation de variables de type Élément }
DateCréation : fonction (E : Élément) −→ Date { date de création de l’élément donné }

{ Si besoin est, on spécifiera d’autres fonctions sur les éléments, mais sans les réaliser }
{ représentation chaînée des arbres ou des forêts. Leurs éléments sont distincts deux à deux. }

AdNoeud : type pointeur de Noeud
Noeud : type <Elt : Élément ; Fils, Frère : AdNoeud>
AdAncêtre : AdNoeud { adresse de l’arbre principal }

b) Questions

Donner une réalisation de chacune des fonctions ou actions suivantes en tenant compte de la
représentation. Dans toutes les questions, les arbres ou forêts considérés vérifient les propriétés

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

8.14

UGA, UFR IM2AG, Algorithmique, langages et programmation Représentation chaînée des arbres

énoncées ci-dessus : éléments distincts deux à deux, liste de fils en ordre chronologique.

E8.12 : Adresse d’un élément
(i) Dans un arbre

AdElémentArbre : fonction (E : Élément, X : AdNoeud) −→ AdNoeud
{ Posons Y = AdElémentArbre(E, X) : si E appartient à l’arbre d’adresse X, Y est l’adresse du nœud
étiqueté par E, sinon Y = Nil. Pré-conditions : X 6= Nil ; les éléments de l’arbre sont distincts deux à
deux. }

(ii) Dans une forêt

AdÉlémentForêt : fonction (E : Élément, X : AdNoeud) −→ AdNoeud
{ Posons Y = AdÉlémentForêt(E, X) : si E appartient à la forêt d’adresse X, Y est l’adresse du nœud
étiqueté par E, sinon Y = Nil. Pré-condition : les éléments de la forêt sont distincts deux à deux. }

E8.13 : Filiation

EstFils : fonction (E1, E2 : Élément) −→ booléen
{ vrai ⇐⇒ E2 est un fils de E1 dans l’arbre principal. En particulier, EstFils(E1,E2) a la valeur faux
si E1 n’appartient pas à l’arbre principal. Dans l’exemple ci-dessus, EstFils(H, R) a la valeur vrai ;
EstFils(H, U) a la valeur faux ; EstFils(E, V) a la valeur faux. }

E8.14 : Parenté

EstDesc : fonction (E1, E2 : Élément) −→ booléen
{ vrai si et seulement si E2 fait partie de la descendance de E1 dans l’arbre principal. En particulier,
EstDesc(E1,E2) a la valeur faux si E1 n’appartient pas à l’arbre principal. Dans l’exemple ci-dessus,
EstDesc(D, U) a la valeur vrai ; EstDesc(D, J) a la valeur vrai, EstDesc(D, Q) a la valeur faux. }

E8.15 : Dénombrement

NbAvant : fonction (D : Date) −→ entier ≥ 0
{ Nombre d’éléments de l’arbre principal dont la date de création est strictement antérieure à la date
D. }

Étudier deux versions :
— l’une en généralisant le problème à un arbre d’adresse X,
— l’autre en le généralisant à une forêt d’adresse X. On exploitera le fait que tout élément

de l’arbre a une date antérieure à celles de ses descendants.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

8.15

UGA, UFR IM2AG, Algorithmique, langages et programmation Représentation chaînée des arbres

E8.16 : Ajout d’un élément

Ajouter : action (donnée E1, E2 : Élément)
{ Modifie l’arbre principal de manière à prendre en compte l’ajout d’un élément E2, comme fils d’un
élément E1.
Pré-conditions : E1 6= E2, E1 appartient déjà à l’arbre principal, E2 ne lui appartient pas et la date
de E1 est antérieure à celle de E2. }

On tiendra compte de l’ordre chronologique entre les fils d’un nœud.

E8.17 : Edition de l’arbre
Décrire une action, nommée ÉditerArbre, qui imprime l’arbre principal sous forme indentée.
Pour l’exemple de la Figure 8.6, on obtient l’impression ci-dessous.

A
B
E

L
M

V
W

N
F
G

O
P

X
Y
Z

H
Q
R
S

I
D

C

J
T

K
U

Figure 8.7 – Edition de l’arbre principal

A l’état initial le curseur d’impression est positionné au début de la première ligne d’une nouvelle
page. A l’état final, il est positionné au début de la ligne qui suit la dernière ligne imprimée.
On supposera que la page est suffisamment grande pour contenir l’arbre (tant en largeur qu’en
hauteur).

On dispose des primitives suivantes : AlaPage positionne le curseur au début de la première
ligne d’une nouvelle page ; AlaLigne positionne le curseur au début de la prochaine ligne ;
Marge(n) écrit n espaces à partir de la position courante du curseur ; EditerÉlément(E),
a pour effet d’écrire les informations correspondant à l’élément de valeur E, à partir de la
position courante du curseur.

c©PC Scholl, F Carrier, C Vigouroux - Juillet 2025
Texte de référence : "Cours d’informatique – Langages et Programmation", Masson 1993

8.16

