
CSCE 790
Introduction to Software Analysis

Code Obfuscation II

Professor Lisa Luo
Fall 2018



Summary

• What is code obfuscation and its applications?
– Code obfuscation can be used to protect code, but it is also used by 

malware to evade detection
• Obfuscation thwarts decompilation

– Control flow obfuscation
• Opaque predicates, 
• Control flow flattening
• Function inline and outline
• Function clone

– Data flow obfuscation
• Converting static data to procedural data
• Encoding integers
• Spliting variables
• Restructuring arrays

2



3

Decompile or

Disrupt decompilation phase

Disrupt disassembly phase



Background of Disassembly

4



Structure of an Executable File

5



Two Approaches of Disassembly

• Static disassembly
– Executable is not executed
– Pro: can process the entire file all at once

• Dynamic disassembly
– Executable is executed on some input and monitored
by an external tool (e.g., a debugger)

– Con: only the instructions that are being executed can
be identified.

6



Static Disassembly

• Two generally used techniques:
– Linear sweep
– Recursive traversal

7



Thwarting Linear Sweep

8



Linear Sweep

• It begins at the first 
executable byte, and 
sweeps through the 
entire text section 
disassembling each 
instruction

• Used by objdump

9



Linear Sweep

10



Linear Sweep

• Drawbacks: If the
text session contain
data, the data will be
treated as code and
disassembled as
instructions

11

Obfuscation makes uses of
this to thwart linear sweep



Thwarting Linear Sweep

Ø Junk code insertion
• Two properties:

1. Inserted junk code should NOT effect the program’s
runtime behaviors
• The junk code should unreachable at runtime

2. Inserted junk code should confuse the static
disassembler, such that the generated disassemble
code is not correct

12



Junk Insertion

13

Program

Obfuscated
program

Junk code insertion Runtime behavior
are the same

Assembly
code

Assembly
code

Disassembling

Disassembling

Assembly code
are different



Example

14



15

…

jne L1

…

jmp L2
L1: …

L2: …

Conditional jump

Unconditional jump

Junk code should be inserted before a basic block which is
only the target of a conditional jump

Junk code can be
inserted here



Thwarting Recursive Traversal

16



Recursive Traversal

• The problem of linear sweep:
– It does not take into account the control flow behavior of the 

program, and thus cannot “go around” data embedded in the text
session, and mistakenly interprets them as executable code. 

• Recursive traversal fixes this problem, and take into
account the control flow behavior of the program

17



Recursive Traversal

18

• Whenever a branch is
encountered, it determine 
the possible control flow 
successors of that 
instruction, and proceed 
with disassembly at those 
addresses



Thwarting Recursive Traversal

ØBranch functions

• When it is called from one of the locations ai, it
transfers the control to the corresponding 
location bi

• Then we can insert junk code after the branch
functions

19



Branch Functions

20

At runtime, the branch functionmodifies the return address
such that the next instruction is at b1, b2, or bn



Branch Functions

21

a1: call function
a2: ….

a1: call f

f

a2

At runtime, the branch functionmodifies the return address
such that the next instruction is at a2.

(a) Original code (b) Code using a branch function



Example

22

At runtime, the branch functionmodifies the return
address such that the next instruction is at 804800a



Code Obfuscation as it
Related to Malware

23



Anti-Virus

• Analyze binary to decide if it is a virus
• Analyze program behavior

• Types:
– Scanner
– Real time monitor



1. Scanner : Virus signature

• Find a string that can identify the virus
• Fingerprint like

Malware



Virus’s Defense

• Change their code as they propagate

• Some Virus types:
– Polymorphic virus
– Metamorphic virus

26



Polymorphic Virus Metamorphic Virus

27

Malware Malware

Decrypt
(k1)

Malware

Decrypt
(k2)

Malware

Decrypt
(k1)

Decrypt
(k2)

Code Obfuscation



28

Code Obfuscation

• Goal: prevent signature-based detection, and
reverse-engineering

• Code obfuscation
– Hard-to-analyze code structures
– Different code in each copy of the virus
• Effect of code execution is the same, but this is 

difficult to detect by static analysis 



29

Code Obfuscation Techniques

• Some examples:
– Control flow obfuscation

• Opaque predicates, 
• Control flow flattening
• Function inline and outline
• Function clone

– Data flow obfuscation
• Converting static data to procedural data
• Encoding integers
• Spliting variables
• Restructuring arrays 

– Junk insertion & branch functions …

• There is no constant, recognizable virus body



Number of malware signatures

Symantec report 2009



2. Real Time Monitor : Heuristics

• Analyze program behavior
– Network access
– File open
– Attempt to delete file
– Attempt to modify the boot sector



Sandbox analysis

• Running the executable in a VM
• Observe it
– File activity
– Network
– Memory



Virus’s Defense

• Anti-debugger detection and VM detection
– Detect debuggers and virtual machines, and

terminate execution

33



Drawbacks

• Limited code coverage
• Impossible to analyze/execute all the code



Summary

• Two generally used techniques in static disassembly:
– Linear sweep
– Recursive traversal

• Obfuscation thwarts disassembly
– Thwarting linear sweep: junk insertion
– Thwarting recursive traversal: branch functions

• Obfuscation as it related to viruses
– Detect malware

• Static & dynamic
– Virus Types 

• Polymorphic 
• Metamorphic 

– Obfuscation techniques

35


