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Summary

• What is code obfuscation and its applications?
– Code obfuscation can be used to protect code, but it is also used by 

malware to evade detection
• Obfuscation thwarts decompilation

– Control flow obfuscation
• Opaque predicates, 
• Control flow flattening
• Function inline and outline
• Function clone

– Data flow obfuscation
• Converting static data to procedural data
• Encoding integers
• Spliting variables
• Restructuring arrays
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Decompile or

Disrupt decompilation phase

Disrupt disassembly phase



Background of Disassembly
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Structure of an Executable File
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Two Approaches of Disassembly

• Static disassembly
– Executable is not executed
– Pro: can process the entire file all at once

• Dynamic disassembly
– Executable is executed on some input and monitored
by an external tool (e.g., a debugger)

– Con: only the instructions that are being executed can
be identified.
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Static Disassembly

• Two generally used techniques:
– Linear sweep
– Recursive traversal

7



Thwarting Linear Sweep
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Linear Sweep

• It begins at the first 
executable byte, and 
sweeps through the 
entire text section 
disassembling each 
instruction

• Used by objdump
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Linear Sweep
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Linear Sweep

• Drawbacks: If the
text session contain
data, the data will be
treated as code and
disassembled as
instructions
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Obfuscation makes uses of
this to thwart linear sweep



Thwarting Linear Sweep

Ø Junk code insertion
• Two properties:

1. Inserted junk code should NOT effect the program’s
runtime behaviors
• The junk code should unreachable at runtime

2. Inserted junk code should confuse the static
disassembler, such that the generated disassemble
code is not correct
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Junk Insertion
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Program

Obfuscated
program
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Assembly
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Example
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…

jne L1

…

jmp L2
L1: …

L2: …

Conditional jump

Unconditional jump

Junk code should be inserted before a basic block which is
only the target of a conditional jump

Junk code can be
inserted here



Thwarting Recursive Traversal
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Recursive Traversal

• The problem of linear sweep:
– It does not take into account the control flow behavior of the 

program, and thus cannot “go around” data embedded in the text
session, and mistakenly interprets them as executable code. 

• Recursive traversal fixes this problem, and take into
account the control flow behavior of the program
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Recursive Traversal
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• Whenever a branch is
encountered, it determine 
the possible control flow 
successors of that 
instruction, and proceed 
with disassembly at those 
addresses



Thwarting Recursive Traversal

ØBranch functions

• When it is called from one of the locations ai, it
transfers the control to the corresponding 
location bi

• Then we can insert junk code after the branch
functions
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Branch Functions
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At runtime, the branch functionmodifies the return address
such that the next instruction is at b1, b2, or bn



Branch Functions
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a1: call function
a2: ….

a1: call f

f

a2

At runtime, the branch functionmodifies the return address
such that the next instruction is at a2.

(a) Original code (b) Code using a branch function



Example
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At runtime, the branch functionmodifies the return
address such that the next instruction is at 804800a



Code Obfuscation as it
Related to Malware
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Anti-Virus

• Analyze binary to decide if it is a virus
• Analyze program behavior

• Types:
– Scanner
– Real time monitor



1. Scanner : Virus signature

• Find a string that can identify the virus
• Fingerprint like

Malware



Virus’s Defense

• Change their code as they propagate

• Some Virus types:
– Polymorphic virus
– Metamorphic virus
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Polymorphic Virus Metamorphic Virus
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Malware Malware

Decrypt
(k1)

Malware

Decrypt
(k2)

Malware

Decrypt
(k1)

Decrypt
(k2)

Code Obfuscation
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Code Obfuscation

• Goal: prevent signature-based detection, and
reverse-engineering

• Code obfuscation
– Hard-to-analyze code structures
– Different code in each copy of the virus
• Effect of code execution is the same, but this is 

difficult to detect by static analysis 
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Code Obfuscation Techniques

• Some examples:
– Control flow obfuscation

• Opaque predicates, 
• Control flow flattening
• Function inline and outline
• Function clone

– Data flow obfuscation
• Converting static data to procedural data
• Encoding integers
• Spliting variables
• Restructuring arrays 

– Junk insertion & branch functions …

• There is no constant, recognizable virus body



Number of malware signatures

Symantec report 2009



2. Real Time Monitor : Heuristics

• Analyze program behavior
– Network access
– File open
– Attempt to delete file
– Attempt to modify the boot sector



Sandbox analysis

• Running the executable in a VM
• Observe it
– File activity
– Network
– Memory



Virus’s Defense

• Anti-debugger detection and VM detection
– Detect debuggers and virtual machines, and

terminate execution
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Drawbacks

• Limited code coverage
• Impossible to analyze/execute all the code



Summary

• Two generally used techniques in static disassembly:
– Linear sweep
– Recursive traversal

• Obfuscation thwarts disassembly
– Thwarting linear sweep: junk insertion
– Thwarting recursive traversal: branch functions

• Obfuscation as it related to viruses
– Detect malware

• Static & dynamic
– Virus Types 

• Polymorphic 
• Metamorphic 

– Obfuscation techniques
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