
Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

The Lazart tool - multiple faults attacks and DSE
Master Advanced Security 2024

Etienne Boespflug (etienne.boespflug@gmail.com)

2024-2025

Université de Grenoble Alpes

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 1 / 25

Outline

1 Multiple Fault Injection

2 DSE and Fault Injection

3 The Lazart tool

4 Software countermeasures

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Fault injection

Fault Injection

Fault-injection attacks

Lasers

Electromagnetic pulses

Temperature

Power & clock glitches

Software induced

Figure: Laser fault injection bench [1]

Goal : modify device behavior/state to break security property and gain advantage

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 2 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Fault injection

Fault Injection

Fault-injection attacks

Lasers

Electromagnetic pulses

Temperature

Power & clock glitches

Software induced

Figure: Rowhammer principle [2]

Goal : modify device behavior/state to break security property and gain advantage

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 2 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Fault injection

verify_pin program

PIN verification program from FISSC [1] collection

1 bool compare(uchar* a1, uchar* a2 , size_t size)
2 {
3 bool ret = true;
4 size_t i = 0;
5 for(; i < size; i++)
6 if(a1[i] != a2[i])
7 ret = false;
8
9 return ret;
10 }
11
12 bool verify_pin(uchar* user_pin) {
13 if(try_counter > 0)
14 if(compare(user_pin , card_pin , PIN_SIZE)) {
15 // Authentication
16 try_counter = 3;
17 return true;
18 } else {
19 try_counter --;
20 return false;
21 }
22 return false;
23 }

Compare user PIN against the card’s
one in constant time

Attack objective: being authenticated
with a false PIN

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 3 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Fault injection

Faults injection - Example on verify_pin

PIN verification program from FISSC [1] collection

1 bool compare(uchar* a1, uchar* a2 , size_t size)
2 {
3 bool ret = true;
4 size_t i = 0;
5 for(; i < size; i++) // Fault: avoid the loop
6 if(a1[i] != a2[i])
7 ret = false;
8
9 return ret;
10 }
11
12 bool verify_pin(uchar* user_pin) {
13 if(try_counter > 0)
14 if(compare(user_pin , card_pin , PIN_SIZE)) {
15 // Authentication
16 try_counter = 3;
17 return true;
18 } else {
19 try_counter --;
20 return false;
21 }
22 return false;
23 }

Fault model: modelisation of the faults
to be injected

→ ex: Test inversion: inverse the
branch taken during conditional
branching

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 4 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Fault injection

Faults injection - Example on verify_pin

PIN verification program from FISSC [1] collection

1 bool compare(uchar* a1, uchar* a2 , size_t size)
2 {
3 bool ret = true;
4 size_t i = 0;
5 for(; i < size; i++) // Fault
6 if(a1[i] != a2[i])
7 ret = false;
8
9 if(i != size) // Countermeasure
10 killcard ();
11
12 return ret;
13 }
14
15 bool verify_pin(uchar* user_pin) {
16 if(try_counter > 0)
17 if(compare(user_pin , card_pin , PIN_SIZE)) {
18 // Authentication
19 try_counter = 3;
20 return true;
21 } else {
22 try_counter --;
23 return false;
24 }
25 return false;
26 }

Fault model: modelisation of the faults
to be injected

→ ex: Test inversion: inverse the
branch taken during conditional
branching

Software countermeasures
(program transformations) can be
placed to protect against faults

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 4 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Fault injection

Faults injection - Example on verify_pin

PIN verification program from FISSC [1] collection

1 bool compare(uchar* a1, uchar* a2 , size_t size)
2 {
3 bool ret = true;
4 size_t i = 0;
5 for(; i < size; i++) // Fault 1
6 if(a1[i] != a2[i])
7 ret = false;
8
9 if(i != size) // Fault 2 => countermeasure attack
10 killcard ();
11
12 return ret;
13 }
14
15 bool verify_pin(uchar* user_pin) {
16 if(try_counter > 0)
17 if(compare(user_pin , card_pin , PIN_SIZE)) {
18 // Authentication
19 try_counter = 3;
20 return true;
21 } else {
22 try_counter --;
23 return false;
24 }
25 return false;
26 }

Fault model: modelisation of the faults
to be injected

→ ex: Test inversion: inverse the
branch taken during conditional
branching

Software countermeasures (program
transformations) can be placed to
protect against faults

multiples faults → countermeasures
themselves can be attacked

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 4 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Multiple faults

Robustness evaluation in multiple faults

State of the art attacks combine several faults to achieve their goal. [2, 3, 4]

Comparing the robustness of different protected versions of a program is not trivial

⇒ attack surface paradox [Dureuil 2016] : countermeasure can add attack surface to the code

How to count attacks in case of multiple faults ?

⇒ Which program is the most secure ?
Legend:

HB: hardened booleans

FTL: fixed time loops

INL: inlined function

PTC: try counter decremented first

PTCBK: try counter backup

DC: double call

LC: loop counter verification

SC: step counter

DT: double test

CFI: control flow integrity [5]

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 5 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Multiple faults

Robustness evaluation in multiple faults

State of the art attacks combine several faults to achieve their goal. [2, 3, 4]

Comparing the robustness of different protected versions of a program is not trivial

⇒ attack surface paradox [Dureuil 2016] : countermeasure can add attack surface to the code

How to count attacks in case of multiple faults ?

⇒ Which program is the most secure ?
Legend:

HB: hardened booleans

FTL: fixed time loops

INL: inlined function

PTC: try counter decremented first

PTCBK: try counter backup

DC: double call

LC: loop counter verification

SC: step counter

DT: double test

CFI: control flow integrity [5]

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 5 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Multiple faults

Robustness evaluation in multiple faults

State of the art attacks combine several faults to achieve their goal. [2, 3, 4]

Comparing the robustness of different protected versions of a program is not trivial

⇒ attack surface paradox [Dureuil 2016] : countermeasure can add attack surface to the code

How to count attacks in case of multiple faults ?

⇒ Which program is the most secure ?

verify_pin version (from FISSC [1]) countermeasures 0-faults 1-fault 2-faults 3-faults 4-faults
vp_0 ∅ 0 3 0 0 1
vp_1 HB 0 2 0 0 1
vp_2 HB+FTL 0 2 1 0 1
vp_3 HB+FTL+INL 0 2 1 0 1
vp_4 FTL+INL+DPTC+PTCBK+LC 0 2 0 1 1
vp_5 HB+FTL+DPTC+DC 0 0 4 4 1
vp_6 HB+FTL+INL+DPTC+DT 0 0 3 0 1
vp_7 HB+FTL+INL+DPTC+DT+SC 0 0 2 0 1

Legend:

HB: hardened booleans

FTL: fixed time loops

INL: inlined function

PTC: try counter decremented first

PTCBK: try counter backup

DC: double call

LC: loop counter verification

SC: step counter

DT: double test

CFI: control flow integrity [5]

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 5 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Multiple faults

Robustness evaluation in multiple faults

State of the art attacks combine several faults to achieve their goal. [2, 3, 4]

Comparing the robustness of different protected versions of a program is not trivial

⇒ attack surface paradox [Dureuil 2016] : countermeasure can add attack surface to the code

How to count attacks in case of multiple faults ?

⇒ Which program is the most secure ?

verify_pin version (from FISSC [1]) countermeasures 0-faults 1-fault 2-faults 3-faults 4-faults
vp_0 ∅ 0 3 0 0 1
vp_1 HB 0 2 0 0 1
vp_2 HB+FTL 0 2 1 0 1
vp_3 HB+FTL+INL 0 2 1 0 1
vp_4 FTL+INL+DPTC+PTCBK+LC 0 2 0 1 1
vp_5 HB+FTL+DPTC+DC 0 0 4 4 1
vp_6 HB+FTL+INL+DPTC+DT 0 0 3 0 1
vp_7 HB+FTL+INL+DPTC+DT+SC 0 0 2 0 1

Legend:

HB: hardened booleans

FTL: fixed time loops

INL: inlined function

PTC: try counter decremented first

PTCBK: try counter backup

DC: double call

LC: loop counter verification

SC: step counter

DT: double test

CFI: control flow integrity [5]

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 5 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Representation level

Low-Level Virtual Machine (LLVM)

LLVM [6] is an intermediate representation commonly used for compilers (clang, rustc, Swift,
Julia...), analysis tools (KLEE, AdressSanitizer...) and other projects (Unity with Burst).

Properties

Infinite number of register (called
temporaries

Generic and typed assembly language

Single Static Assignment (SSA) form [?]

LLVM-IR used in binary and textual form
between optimisation / analysis pass

Listing: Hello World! program in IR LLVM (LLVM-9)

1 @.str = private unnamed_addr constant [14 x i8]
c"Hello world !\00", align 1

2
3 define dso_local i32 @main(i32 %0, i8** %1) {
4 %3 = alloca i32 , align 4
5 %4 = alloca i32 , align 4
6 %5 = alloca i8**, align 8
7 store i32 0, i32* %3, align 4
8 store i32 %0, i32* %4, align 4
9 store i8** %1, i8*** %5, align 8

10 %6 = call i32 (i8*, ...) @printf(i8*
getelementptr inbounds ([14 x i8], [14
x i8]* @.str , i64 0, i64 0))

11 ret i32 0
12 }
13
14 declare dso_local i32 @printf(i8*, ...)

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 6 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Representation level

Attack model and representation level

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 7 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Representation level

Attack model and representation level

Attacker model strongly depends on representation level.

Comparison of a faulted execution on software-level and physical-level:

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 7 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Representation level

Binary/architectural fault models

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 8 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Representation level

Software fault models

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 9 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Representation level

Faults Models and exploitation

Binary level effects:

Opcode / Operand replacement
[7]

Data modification: register or
memory mutation [8, 9]

Instruction replay [10]

Out of ISA effects [11]

Software level effects:

Control Flow modification
[12, 4]

Call graph modification [4]

Variables / address alteration
[5]

Exploitation:

Side-channel [13]

Bypassing secure boots [14]

Privilege escalation [15]

Buffer overflow [4]

⇒ Combining several fault from different fault level allows to create more complex fault models.

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 10 / 25

Outline

1 Multiple Fault Injection

2 DSE and Fault Injection

3 The Lazart tool

4 Software countermeasures

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Code analysis approaches

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 11 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Dynamic Symbolic Execution

Formal method based on execution of the program using symbolic variables

Listing: Function example

1 void example(int x, int y) {
σ = { x → x0, y → y0 }

2 PC0 ≡ true
3 if (x + y > 2) { PC1 ≡ x0 + y0 > 2
4 z = 2*x + y;

σ = {z → 2∗x0 +y0, x → x0, y → y0}
5 if (z == 20) {

PC2 ≡ x0 + y0 > 2 ∧ 2 ∗ x0 + y0 = 20
6 x = z + 3;

σ = { z → 2 ∗ x0 + y0, x →
2 ∗ x0 + y0 + 3, y → y0 }

7 print(x);
8 }
9 else { PC3 ≡ x0 + y0 > 2 ∧ 2 ∗ x0 + y0 ̸= 20
10 y *= 2; σ = { z →

2 ∗ x0 + y0, x → x0, y → 2 ∗ y0 }
11 assert(x != 0);
12 }
13 }
14 else { PC4 ≡ x0 + y0 <= 2
15 foo();
16 }
17 }

Variables can be evaluated symbolicaly, maintaining a
symbolic memory state σ

Each time a condition is encountered, the execution is forked
with the Path Constraint (PC) updated

→ a SMT solver is called to check if the PC of the path is
satisfiable

Find entry that trigger the assert (x != 0) → solve the PC: [5, 10]

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 12 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

DSE and Fault Injection attacks

Definition (Godefroid 2011)

A path constraint PCω is correct if every model satisfying PCω gives entries for an execution following the path ω.
A path constraints PCω is complete if every entries following the path ω is a model satisfying PCω .

Listing: Nominal behavior

1 normal_behavior ()
2
3
4
5
6
7

Listing: Faulted behavior

1 inject = symbolic_bool ()
2 if inject and _fault_count <=
3 _fault_limit:
4 _fault_count++
5 faulted_behavior ()
6 else:
7 normal_behavior ()

Definition
A faulted path constraint PCM

ω is correct if every model satisfying PCM
ω gives entries and faults for a (faulted) execution following the path

ω.
A faulted path constraint PCM

ω is complete if every pair (entries, faults) following the path ω is a model satisfying PCM
ω .

The (faulted) path constraint enumeration PCM
ω is correct if and only if, ∀PCM

ω ∈ EM , PCM
ω is correct.

The (faulted) path constraint enumeration PCM
ω is complete if and only if:

∀PCM
ω ∈ EM , PCM

ω is complete, and,

for all path ω ∈ ΩM , ∃PCM
ω ∈ EM such as PCM

ω gives entries and faults for a (faulted) execution following the path ω.

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 13 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

DSE and Fault Injection attacks

Definition (Godefroid 2011)

A path constraint PCω is correct if every model satisfying PCω gives entries for an execution following the path ω.
A path constraints PCω is complete if every entries following the path ω is a model satisfying PCω .

Listing: Nominal behavior

1 normal_behavior ()
2
3
4
5
6
7

Listing: Faulted behavior

1 inject = symbolic_bool ()
2 if inject and _fault_count <=
3 _fault_limit:
4 _fault_count++
5 faulted_behavior ()
6 else:
7 normal_behavior ()

Definition
A faulted path constraint PCM

ω is correct if every model satisfying PCM
ω gives entries and faults for a (faulted) execution following the path

ω.
A faulted path constraint PCM

ω is complete if every pair (entries, faults) following the path ω is a model satisfying PCM
ω .

The (faulted) path constraint enumeration PCM
ω is correct if and only if, ∀PCM

ω ∈ EM , PCM
ω is correct.

The (faulted) path constraint enumeration PCM
ω is complete if and only if:

∀PCM
ω ∈ EM , PCM

ω is complete, and,

for all path ω ∈ ΩM , ∃PCM
ω ∈ EM such as PCM

ω gives entries and faults for a (faulted) execution following the path ω.

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 13 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Redundancy / Equivalence

Attack traces are represented as a sequence of nominal and faulted transitions

Redundancy and equivalence aims to filter attacks for the user in multiple faults

Definition (Redundancy prefix)

An attack a′ is redundant by prefix wrt an attack a if the word of faulted transition of a is a proper prefix of the faulted transition word of a′

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 14 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Redundancy / Equivalence

Attack traces are represented as a sequence of nominal and faulted transitions

Redundancy and equivalence aims to filter attacks for the user in multiple faults

Definition (Redundancy prefix)

An attack a′ is redundant by prefix wrt an attack a if the word of faulted transition of a is a proper prefix of the faulted transition word of a′

Definition (Redundancy subword)

An attack a′ is redundant by subword wrt an attack a if the word of faulted transition of a is a strict subword of the faulted transition word
of a′

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 14 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Redundancy / Equivalence

Attack traces are represented as a sequence of nominal and faulted transitions

Redundancy and equivalence aims to filter attacks for the user in multiple faults

Definition (Equivalence)

An attack a is equivalent to an attack a′ if their sequence of transitions are equal

Definition (Fault-equivalence)

An attack a is equivalent to an attack a′ if their sequence of faulted transitions are equal

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 14 / 25

Outline

1 Multiple Fault Injection

2 DSE and Fault Injection

3 The Lazart tool

4 Software countermeasures

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Lazart and robustness evaluation tools

Lazart overview

Lazart [12] is an LLVM-level multi-fault robustness evaluation tool based on Dynamic-Symbolic
Execution (KLEE)

→ Help developer to develop secure code

→ Help auditor to find vulnerabilities

→ Help for evaluation of countermeasures schemes

Handling multiple faults:

Support for fault models combination

Fine description of fault space

Notion of redundancy and equivalence

Fault models

Test/Branch inversion

Data mutation (load) (symbolic)

Jump

Switch call

→ cover most of high-level fault models

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 15 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Lazart and robustness evaluation tools

Lazart overview

Lazart [12] is an LLVM-level multi-fault robustness evaluation tool based on Dynamic-Symbolic
Execution (KLEE)

→ Help developer to develop secure code

→ Help auditor to find vulnerabilities

→ Help for evaluation of countermeasures schemes

Handling multiple faults:

Support for fault models combination

Fine description of fault space

Notion of redundancy and equivalence

Fault models

Test/Branch inversion

Data mutation (load) (symbolic)

Jump

Switch call

→ cover most of high-level fault models

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 15 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Lazart and robustness evaluation tools

Lazart overview

Lazart [12] is an LLVM-level multi-fault robustness evaluation tool based on Dynamic-Symbolic
Execution (KLEE)

→ Help developer to develop secure code

→ Help auditor to find vulnerabilities

→ Help for evaluation of countermeasures schemes

Handling multiple faults:

Support for fault models combination

Fine description of fault space

Notion of redundancy and equivalence

Fault models

Test/Branch inversion

Data mutation (load) (symbolic)

Jump

Switch call

→ cover most of high-level fault models

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 15 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Lazart’s analysis

Attack analysis - verify_pin

Analysis parameters:

Inputs: Incorrect PIN
Attack objective: being authenticated with a
false PIN
Fault model: up to N test inversions

Fault limit (N) 0 1 2 3 4
Attacks 0 1 5 10 11

A successful 2-order attack (right) inverts the loop’s
condition i < size and the later check
if(i != size) killcard();

→ How to simplify the attacks presented to the user in
multiple faults ?

Figure: The 2-faults attack (Test Inversion)

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 16 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Lazart’s analysis

Attack analysis - verify_pin

Analysis parameters:

Inputs: Incorrect PIN
Attack objective: being authenticated with a
false PIN
Fault model: up to N test inversions

Fault limit (N) 0 1 2 3 4
Attacks 0 1 5 10 11

A successful 2-order attack (right) inverts the loop’s
condition i < size and the later check
if(i != size) killcard();

→ How to simplify the attacks presented to the user in
multiple faults ?

Figure: The 2-faults attack (Test Inversion)

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 16 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Lazart’s analysis

Attack analysis - verify_pin

Analysis parameters:

Inputs: Incorrect PIN
Attack objective: being authenticated with a
false PIN
Fault model: up to N test inversions

Fault limit (N) 0 1 2 3 4
Attacks 0 1 5 10 11

A successful 2-order attack (right) inverts the loop’s
condition i < size and the later check
if(i != size) killcard();

→ How to simplify the attacks presented to the user in
multiple faults ?

Figure: The 2-faults attack (Test Inversion)

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 16 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Lazart’s analysis

Lazart: source level analysis for multiple faults injection

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 17 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Lazart’s analysis

Program instrumentation

Symbolic input are used for:

Symbolic inputs (using
klee_make_symbolic).

Attack objective (predicate verified by
_LZ__ORACLE

Faults (symbolic boolean determining if the
fault is activated).

Fault can be defined:

Using Python analysis script (see later).

By program instrumentation (for some fault
models).

Listing: Instrumentation example with Lazart

1 int foo(int a, int b)
2 {
3 if(b == 0)
4 return a;
5 return a / b;
6 }
7
8 int main() {
9 int a;

10 int b;
11 // (memory pointer , size , name):
12 klee_make_symbolic (&a, sizeof(a), "a");
13 klee_make_symbolic (&b, sizeof(b), "b");
14
15 int result = foo(a, b);
16
17 _LZ__ORACLE(result > 0); // attack objective

.
18 }

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 18 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Lazart’s analysis

Analysis script example

1 #!/usr/bin/python3
2
3 from lazart.lazart import *
4
5 # Parse CLI parameters
6 params = install_script()
7
8 data_sym = data_model({"vars": { # Explicit value description
9 "len": 0, # len is faulted using fixed value.

10 "res": "__sym__" # res is faulted using symbolic value.
11 }})
12
13
14 # Create analysis or load from path if available
15 a = read_or_make(["src/verify_pin.c", "src/main.c"], # Source files
16 functions_list(["verify_pin", "compare"], [ti_model(), data_sym]), # Attack model
17 path="results", # Pass in which analysis file will be stored
18 flags=AnalysisFlag.AttackAnalysis, # Attack analysis (default)
19 compiler_args="-Wall", # Compiler arguments
20 params=params, # Pass CLI params to the analysis
21 klee_args=""
22)
23
24 execute(a) # Execute analysis, print results and generate report
25
26 verify.attack_analysis(a)
27 verify.traces_parsing(a)

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 18 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Lazart’s analysis

Injecting a fault - mutation function

1 int lz_mutation_data_i32(int original , int fault_limit , int (* predicate)(int),
const char* ip_name)

2 {
3 int inject , value;
4 klee_make_symbolic (&inject , sizeof(inject), "inject");
5 if (inject && fault < fault_limit){
6 klee_make_symbolic (&value , sizeof(value), "value");
7 klee_assume(predicate(value));
8 fault ++;
9 printf("[FAULT] at %s from %d to %d\n", ip_name , original ,

klee_get_value_i32(value));
10 return value;
11 }
12 return original;
13 }

check that a new fault injection should be done

in the positive case, the injected value should be used instead of the original one

possibly, the new injected value should satisfy some constraints

each injected fault is logged for later processing

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 19 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Lazart’s analysis

LLVM mutation example

Original bytecode

1 [...]
2 %6 = load i32* %tmp , align 4
3 %7 = sext i32 %6 to i64
4 %8 = call i32 @memcmp(i8* %4, i8* %5, i64 %7) #5
5 %9 = icmp ne i32 %8, 0
6 br i1 %9, label %bb26 , label %bb25

a fault injection is simulated by a call
to the mutation function

data injection on variable %tmp

test inversion : injection on first
operand of the instruction br

Mutated bytecode

1 [...]
2 %6 = alloca i32
3 %7 = load i32* %tmp , align 4
4 %funCall4 = call i32 @lz_mutation_data_i32(i32

%7, i32 4, i32 (i32)* @P_tmp , i8*
getelementptr inbounds ([9 x i8]* @"bb24:
tmp", i32 0, i32 0)) #4

5 store i32 %funCall4 , i32* %6, align 4
6 %8 = load i32* %6, align 4
7 %9 = sext i32 %8 to i64
8 %10 = call i32 @memcmp(i8* %4, i8* %5, i64 %9)

#5
9 %11 = icmp ne i32 %10, 0

10 %12 = sext i1 %11 to i32
11 %funCall5 = call i32 @lz_mutation_test_inversion

(i32 %12, i32 4, i8* getelementptr
inbounds ([5 x i8]* @memcmps_s2 , i32 0,
i32 0), i8* getelementptr inbounds ([5 x
i8]* @memcmps_s3 , i32 0, i32 0), i8*
getelementptr inbounds ([5 x i8]*
@memcmps_s4 , i32 0, i32 0)) #4

12 %13 = icmp ne i32 %funCall5 , 0
13 br i1 %13, label %bb26 , label %bb25

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 20 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Lazart’s analysis

Processing KLEE’s results

LLVM bytecode provided to Klee is instrumented
with printf to log:

basic blocks traversed
faults injected
others (countermeasures triggered, custom events...)

traces are obtained from ktests files using Klee’s
replay tools and parsing stdout logs

traces are then used in subsequent analysis of
Lazart

Figure: VerifyPIN 2-fault attack trace (Python API)

Figure: VerifyPIN 2-fault attack graph

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 21 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Lazart’s analysis

Lazart’s interface

User’s input:
attack objectives are expressed with
klee_assume

fault models and fault injection scopes are
defined in a strategy file

finer granularity with source
instrumentation

Lazart’s other features:
python API for

manipulation of analysis and traces
generation of reports and attacks graphs

automated countermeasure application
(test duplication, SecSwift)

1 fault-models:
2 - &ti
3 type: test-inversion
4 - &dl
5 type: data
6 var:
7 - tmp: 0
8 - x: symbolic
9 - y: symbolic

10 fault-scope:
11 functions:
12 - __all__:
13 - *ti
14 - foo:
15 - type: data
16 all: symbolic
17 - bar:
18 - *dl

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 22 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Lazart’s analysis

Demo

LIVE DEMONSTRATION

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 23 / 25

Outline

1 Multiple Fault Injection

2 DSE and Fault Injection

3 The Lazart tool

4 Software countermeasures

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Countermeasures

Countermeasures are software modification that doesn’t change the software
nominal behavior (without fault) but improve software security in case of faults.

Comparing protected program in multiple fault is not trivial.

Software countermeasures, three classes:
Detective countermeasures: some checks are placed in the program to verify some
security properties. Detection is represented in Lazart using _LZ__CM(); function.

Infective countermeasures: in case of fault, the result is made unusable.

Others: complete program modifications etc.

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 24 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Test Duplication

The Test Duplication generates two detectors for each conditional branch.

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 24 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

SecSwift Control-Flow

SecSwift ControlFlow is one of the 3 parts of SecSwift[16]

Designed for Control-Flow Integrity (CFI)

Uses static signature for each basic block and propagate errors

Each secswift_assert is a detector

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 24 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

LBH’s countermeasure [5]

1 #define INCR(cnt ,val) cnt = cnt + 1;
2 #define CHECK_INCR(cnt ,val , cm_id) if(cnt != val) countermeasure(cm_id); \
3 cnt = cnt + 1;
4 [...]
5
6
7 BOOL verifyPIN(unsigned short* CNT_0_VP_1)
8 {
9 CHECK_INCR(*CNT_0_VP_1, CNT_INIT_VP + 0, 0LL)

10 g_authenticated = 0;
11 CHECK_INCR(*CNT_0_VP_1, CNT_INIT_VP + 1, 1LL)
12 DECL_INIT(CNT_0_byteArrayCompare_CALLNB_1, CNT_INIT_BAC)
13 CHECK_INCR(*CNT_0_VP_1, CNT_INIT_VP + 2, 2LL)
14 BOOL res = byteArrayCompare(g_userPin , g_cardPin , PIN_SIZE, &CNT_0_byteArrayCompare_CALLNB_1);
15 [...]

Insert step-counters for each C construct

Checking macros (such as CHECK_INCR) are detectors

Analysis allows to know where the counter verification can be removed

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 24 / 25

Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Conclusion

Multi fault make difficult to analyze programs (longer analysis times).

Fault models depends on the representation level (physical, µarchitectural, binary,
software, logcal...).

Lazart uses DSE at LLVM level to produce multiple fault attacks tests cases.

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 25 / 25

References I

Louis Dureuil, Guillaume Petiot, Marie-Laure Potet, Thanh-Ha Le, Aude Crohen, and Philippe de Choudens.

FISSC: A Fault Injection and Simulation Secure Collection.
In Computer Safety, Reliability, and Security - 35th International Conference, SAFECOMP 2016, Trondheim,
Norway, September 21-23, 2016, Proceedings, pages 3–11, 2016.

Chong Hee Kim and Jean-Jacques Quisquater.

Fault attacks for crt based rsa: New attacks, new results, and new countermeasures.
In IFIP International Workshop on Information Security Theory and Practices, pages 215–228. Springer,
2007.

Roberto Natella, Domenico Cotroneo, and Henrique S. Madeira.

Assessing Dependability with Software Fault Injection: A Survey.
ACM Computing Surveys, 48(3):1–55, February 2016.

Wookey/SSTIC20.

Inter-cesti: Methodological and technical feedbacks on hardware devices evaluations.
https://www.sstic.org/media/SSTIC2020/SSTIC-actes/inter-cesti_methodological_and_
technical_feedbacks/SSTIC2020-Article-inter-cesti_methodological_and_technical_feedbacks_
on_hardware_devices_evaluations-benadjila.pdf, 2020.

Jean-François Lalande, Karine Heydemann, and Pascal Berthomé.

Software countermeasures for control flow integrity of smart card C codes.
In Pr. of the 19th European Symposium on Research in Computer Security, ESORICS 2014, pages 200–218,
2014.

https://www.sstic.org/media/SSTIC2020/SSTIC-actes/inter-cesti_methodological_and_technical_feedbacks/SSTIC2020-Article-inter-cesti_methodological_and_technical_feedbacks_on_hardware_devices_evaluations-benadjila.pdf
https://www.sstic.org/media/SSTIC2020/SSTIC-actes/inter-cesti_methodological_and_technical_feedbacks/SSTIC2020-Article-inter-cesti_methodological_and_technical_feedbacks_on_hardware_devices_evaluations-benadjila.pdf
https://www.sstic.org/media/SSTIC2020/SSTIC-actes/inter-cesti_methodological_and_technical_feedbacks/SSTIC2020-Article-inter-cesti_methodological_and_technical_feedbacks_on_hardware_devices_evaluations-benadjila.pdf

References II

Chris Lattner and Vikram Adve.

LLVM: A compilation framework for lifelong program analysis and transformation.
In CGO, pages 75–88, San Jose, CA, USA, Mar 2004.

J. Balasch, B. Gierlichs, and I. Verbauwhede.

An in-depth and black-box characterization of the effects of clock glitches on 8-bit mcus.
In 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 105–114, 2011.

Johannes Blömer, Martin Otto, and Jean-Pierre Seifert.

A new crt-rsa algorithm secure against bellcore attacks.
In 10th ACM conference on Computer and communications security, CCS ’03, page 311–320, New York, NY,
USA, 2003. Association for Computing Machinery.

I. Verbauwhede, D. Karaklajic, and J. Schmidt.

The fault attack jungle - a classification model to guide you.
In 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 3–8, 2011.

Lionel Rivière, Zakaria Najm, Pablo Rauzy, Jean-Luc Danger, Julien Bringer, and Laurent Sauvage.

High precision fault injections on the instruction cache of armv7-m architectures.
In IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2015, Washington, DC,
USA, 5-7 May, 2015, pages 62–67. IEEE, 2015.

J. Laurent, V. Beroulle, C. Deleuze, and F. Pebay-Peyroula.

Fault injection on hidden registers in a risc-v rocket processor and software countermeasures.
In 2019 Design, Automation Test in Europe Conference Exhibition (DATE), pages 252–255, 2019.

References III

Marie-Laure Potet, Laurent Mounier, Maxime Puys, and Louis Dureuil.

Lazart: A symbolic approach for evaluation the robustness of secured codes against control flow injections.
In 2014 IEEE Seventh International Conference on Software Testing, Verification and Validation, pages
213–222. IEEE, 2014.

Eli Biham and Adi Shamir.

Differential fault analysis of secret key cryptosystems.
In Annual international cryptology conference, pages 513–525. Springer, 1997.

Shoei Nashimoto, Naofumi Homma, Yu-ichi Hayashi, Junko Takahashi, Hitoshi Fuji, and Takafumi Aoki.

Buffer overflow attack with multiple fault injection and a proven countermeasure.
Journal of Cryptographic Engineering, 7(1):35–46, 2017.

Niek Timmers, Albert Spruyt, and Marc Witteman.

Controlling pc on arm using fault injection.
In 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pages 25–35. IEEE, 2016.

François de Ferrière.

A compiler approach to cyber-security.
2019 European LLVM developers’ meeting, 2019.

Jörn-Marc Schmidt, Michael Hutter, and Thomas Plos.

Optical fault attacks on aes: A threat in violet.
In 2009 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pages 13–22. IEEE, 2009.

References IV

Michael Hutter and Jörn-Marc Schmidt.

The temperature side channel and heating fault attacks.
In International Conference on Smart Card Research and Advanced Applications, pages 219–235. Springer,
2013.

Paul Kocher, Joshua Jaffe, and Benjamin Jun.

Differential power analysis.
In Annual international cryptology conference, pages 388–397. Springer, 1999.

Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi.

Introduction to differential power analysis.
Journal of Cryptographic Engineering, 1(1):5–27, 2011.

Karine Gandolfi, Christophe Mourtel, and Francis Olivier.

Electromagnetic analysis: Concrete results.
In International workshop on cryptographic hardware and embedded systems, pages 251–261. Springer,
2001.

Paul C Kocher.

Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems.
In Annual International Cryptology Conference, pages 104–113. Springer, 1996.

Kris Tiri.

Side-channel attack pitfalls.
In 2007 44th ACM/IEEE Design Automation Conference, pages 15–20. IEEE, 2007.

References V

Dmitri Asonov and Rakesh Agrawal.

Keyboard acoustic emanations.
In IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004, pages 3–11. IEEE, 2004.

Haritabh Gupta, Shamik Sural, Vijayalakshmi Atluri, and Jaideep Vaidya.

A side-channel attack on smartphones: Deciphering key taps using built-in microphones.
Journal of Computer Security, 26(2):255–281, 2018.

Dan Boneh, Richard A DeMillo, and Richard J Lipton.

On the importance of checking cryptographic protocols for faults.
In International conference on the theory and applications of cryptographic techniques, pages 37–51.
Springer, 1997.

François Poucheret, Karim Tobich, Mathieu Lisarty, L Chusseauz, B Robissonx, and Philippe Maurine.

Local and direct em injection of power into cmos integrated circuits.
In 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 100–104. IEEE, 2011.

Brice Colombier, Alexandre Menu, Jean-Max DUTERTRE, Pierre-Alain Moëllic, Jean-Baptiste Rigaud, and
Jean-Luc Danger.
Laser-induced Single-bit Faults in Flash Memory: Instructions Corruption on a 32-bit Microcontroller.
In 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pages 1–10,
McLean, United States, May 2019. IEEE.

References VI

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai,
and Onur Mutlu.
Flipping bits in memory without accessing them: An experimental study of dram disturbance errors.
ACM SIGARCH Computer Architecture News, 42(3):361–372, 2014.

Mark Seaborn and Thomas Dullien.

Exploiting the dram rowhammer bug to gain kernel privileges.
Black Hat, 15:71, 2015.

Bilgiday Yuce, Patrick Schaumont, and Marc Wittenman.

Fault attacks on secure embedded software: Threats, design, and evaluation.
In Journal of Hardware and Systems Security, pages 111–130, 2018.

Cyril Roscian, Alexandre Sarafianos, Jean-Max Dutertre, and Assia Tria.

Fault model analysis of laser-induced faults in sram memory cells.
In 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 89–98. IEEE, 2013.

Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache.

Fault injection attacks on cryptographic devices: Theory, practice, and countermeasures.
Proceedings of the IEEE, 100(11):3056–3076, 2012.

Alfredo Benso, Paolo Prinetto, Maurizio Rebaudengo, and M Sonza Reorda.

Exfi: a low-cost fault injection system for embedded microprocessor-based boards.
ACM Transactions on Design Automation of Electronic Systems (TODAES), 3(4):626–634, 1998.

References VII

Giorgis Georgakoudis, Ignacio Laguna, Dimitrios S Nikolopoulos, and Martin Schulz.

Refine: Realistic fault injection via compiler-based instrumentation for accuracy, portability and speed.
In Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–14, 2017.

Anna Thomas and Karthik Pattabiraman.

Llfi: An intermediate code level fault injector for soft computing applications.
In Workshop on Silicon Errors in Logic System Effects (SELSE), 2013.

Vincent Werner.

Optimiser l’identification et l’exploitation de vulnérabilité à l’injection de faute sur microcontröleurs.
PhD thesis, Université Grenoble Alpes, 2022.

Olivier Faurax, Laurent Freund, Assia Tria, Traian Muntean, and Frédéric Bancel.

A generic method for fault injection in circuits.
In 2006 6th International Workshop on System on Chip for Real Time Applications, pages 211–214. IEEE,
2006.

Hoang M Le, Vladimir Herdt, Daniel Große, and Rolf Drechsler.

Resilience evaluation via symbolic fault injection on intermediate code.
In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 845–850. IEEE, 2018.

Karthik Pattabiraman, Nithin Nakka, Zbigniew Kalbarczyk, and Ravishankar Iyer.

Symplfied: Symbolic program-level fault injection and error detection framework.
In Dependable Systems and Networks With FTCS and DCC, 2008. DSN 2008. IEEE International
Conference on, pages 472–481. IEEE, 2008.

References VIII

Guilhem Lacombe, David Feliot, Etienne Boespflug, and Marie-Laure Potet.

Combining static analysis and dynamic symbolic execution in a toolchain to detect fault injection
vulnerabilities.
In PROOFS WORKSHOP (SECURITY PROOFS FOR EMBEDDED SYSTEMS), 2021.

