The Lazart tool - multiple faults attacks and DSE
Master Advanced Security 2025

Etienne Boespflug (etienne.boespflug@gmail.com)

2025-2026

Université de Grenoble Alpes

%mas

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2025-2026 1/28

Multiple Fault Injection

Multiple Fault Injection
@0000

Fault injection

Fault Injection

Figure: Laser fault injection bench [1]
Fault-injection attacks

Lasers
Electromagnetic pulses
Temperature

Power & clock glitches

Software induced

Goal: modify device behavior/state to break security property and gain advantage

%mas

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2025-2026

Multiple Fault Injection
@0000

Fault injection

Fault Injection

Figure: Rowhammer principle [2]
Fault-injection attacks

Lasers

Electromagnetic pulses

Temperature

Power & clock glitches

Software induced

Goal: modify device behavior/state to break security property and gain advantage
%mas

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2025-2026

Multiple Fault Injection
[e] lele]e}

Fault injection

verify_pin program

PIN verification program from FISSC [1] collection

1 bool compara(uchar* al, uchar* a2, size_t size)

2 o

3 bool ret = true;

4 size_t i = 0;

5 for(; i < size; i++)

6 if(a1lil != a2[il)

7 ret = false; m Compare user PIN against the card’s
8 one in constant time
9 return ret;

10 ¥

11

12 bool verify_pin(ucharx user_pin) { m Attack objective: being authenticated
13 if (try_counter > 0) .

14 if (compare (user_pin, card_pin, PIN_SIZE)) { with a false PIN

15 // Authentication

16 try_counter = 3;

17 return true;

18 } else {

19 try_counter--;

20 return false;

21 }

22 return false;

23}

The Lazart tool - DSE

Etienne Boespf multiple fault attacks

Multiple Fault Injection
[e]e] le]e}

Fault injection

Faults injection - Example on verify_pin

PIN verification program from FISSC [1] collection

1 bool compara(uchar* al, uchar* a2, size_t size)

2 {

3 bool ret = true;

4 size_t i = 0;

5 for(; i < size; i++) // Fault: avoid the loop

6 if(a1lil != a2[il)

! ret = false; = Fault model: modelisation of the faults
9 return ret; to be injected

10 b . . .

11 — ex: Test inversion: inverse the
12 bool verify_pin(uchar* user_pin) { branch taken during conditional
13 if (try_counter > 0) branching

14 if (compare (user_pin, card_pin, PIN_SIZE)) {

15 // Authentication

16 try_counter = 3;

17 return true;

18 } else {

19 try_counter--;

20 return false;

21 }

22 return false;

23}

The Lazart tool - DSE

Etienne Boespf multiple fault attacks

Multiple Fault Injection
[e]e]e] lo}

Fault injection

Faults injection - Example on verify_pin

PIN verification program from FISSC [1] collection

1 bool compare(uchar* al, uchar* a2, size_t size)
2 {

3 bool ret = true;

4 size_t i = 0;

5 for(; i < size; i++) // Fault

6 if (a1li] = a2[i])

7 ret = false;

8

9 if (i != size) // Countermeasure
10 killcard) ;

11

12 return ret;

13 }

14

15 bool verify_pin(uchar* user_pin) {
16 if (try_counter > 0)

17 if (compare (user_pin, card_pin, PIN_SIZE)) {
18 // Authentication

19 try_counter = 3;

20 return true;

21 } else {

22 try_counter--;

23 return false;

24 }

25 return false;

26 }

Etienne Boespflug

ool - DSE and multiple fault attacks 2025-2026

= Fault model: modelisation of the faults
to be injected

— ex: Test inversion: inverse the
branch taken during conditional
branching

= Software countermeasures
(program transformations) can be
placed to protect against faults

%mas

Multiple Fault Injection
[e]e]ele]]

Fault injection

Faults injection - Example on verify_pin

PIN verification program from FISSC [1] collection

1 bool compare(uchar* al, uchar* a2, size_t size)
2 o
3 bool ret = true; L
4 size_t i = 0; = Fault model: modelisation of the faults
5 for(; i < size; i++) // Fault 1 to be injected
6 if(alfil t= a2[il)
N ret = false; — ex: Test inversion: inverse the
8 . e
9 if (i !'= size) // Fault 2 => countermeasure attack branCh_taken dUrlng condltlonal
10 killcard(); branching
11
12 return ret;
13 }
14 = Software countermeasures (program
15 bool verify_pin(ucharx user_pin) { transformations) can be placed to
16 if (try_counter > 0) .
17 if (compare (user_pin, card_pin, PIN_SIZE)) { protect against faults
i [/ Authentication multiples faults — countermeasures
ry_counter = 3;
20 return true; themselves can be attacked
21 } else {
22 try_counter--;
23 return false;
24 }
25 return false;
26 b
%mas
Etienne Boespflug ool - DSE and multiple fault attacks 2025-2026

Multiple Fault Injection
L]

Multiple faults

Robustness evaluation in multiple faults

State of the art attacks combine several faults to achieve their goal. [2, 3, 4]

%mas

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2025-2026 5/28

Multiple Fault Injection
L]

Multiple faults

Robustness evaluation in multiple faults

State of the art attacks combine several faults to achieve their goal. [2, 3, 4]

= Comparing the robustness of different protected versions of a program is not trivial
= attack surface paradox [Dureuil 2016]: countermeasure can add attack surface to the code

%mas

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2025-2026 5/28

Multiple Fault Injection
L]

Multiple faults

Robustness evaluation in multiple faults

State of the art attacks combine several faults to achieve their goal. [2, 3, 4]

= Comparing the robustness of different protected versions of a program is not trivial
= attack surface paradox [Dureuil 2016]: countermeasure can add attack surface to the code
= How to count attacks in case of multiple faults ?
= Which program is the most secure ?
verify_pin version (from FISSC [1]) | countermeasures O-faults | 1-fault | 2-faults | 3-faults | 4-faults
vp_0 0 0 3 0 0 1
vp_1 HB 0 2 0 0
vp_2 HB+FTL 0 2 1 0 1
vp_3 HB+FTL+INL 0 2 1 0 1
vp_4 FTL+INL+DPTC+PTCBK+LC 0 2 0 1 1
vp_5 HB+FTL+DPTC+DC 0 0 4 4 1
vp_6 HB+FTL+INL+DPTC+DT 0 0 3 0 1
vp_7 HB+FTL+INL+DPTC+DT+SC 0 0 2 0 1
Legend:
= HB: hardened booleans = DC: double call
m FTL: fixed time loops m LC: loop counter verification
® INL: inlined function m SC: step counter V
m PTC: try counter decremented first m DT: double test erimac
m PTCBK: try counter backup m CFl: control flow integrity [5]
Etienne Boespflug ool - DSE and multiple fault attacks 2025-2026

Multiple Fault Injection
L]

Multiple faults

Robustness evaluation in multiple faults

State of the art attacks combine several faults to achieve their goal. [2, 3, 4]

= Comparing the robustness of different protected versions of a program is not trivial
= attack surface paradox [Dureuil 2016]: countermeasure can add attack surface to the code
= How to count attacks in case of multiple faults ?
= Which program is the most secure ?
verify_pin version (from FISSC [1]) | countermeasures O-faults | 1-fault | 2-faults | 3-faults | 4-faults
vp_0 0 0 3 0 0 1
vp_1 HB 0 2 0 0
vp_2 HB+FTL 0 2 1 0 1
vp_3 HB+FTL+INL 0 2 1 0 1
vp_4 FTL+INL+DPTC+PTCBK+LC 0 2 0 1 1
vp_5 HB+FTL+DPTC+DC 0 0 4 4 1
vp_6 HB+FTL+INL+DPTC+DT 0 0 3 0 1
vp_7 HB+FTL+INL+DPTC+DT+SC 0 0 2 0 1
Legend:
= HB: hardened booleans = DC: double call
m FTL: fixed time loops m LC: loop counter verification
® INL: inlined function m SC: step counter V
m PTC: try counter decremented first m DT: double test erimac
m PTCBK: try counter backup m CFl: control flow integrity [5]
Etienne Boespflug ool - DSE and multiple fault attacks 2025-2026

Multiple Fault Injection
@00000

Representation level

Low-Level Virtual Machine (LLVM)

LLVM [6] is an intermediate representation commonly used for compilers (clang, rustc, Swift,
Julia...), analysis tools (KLEE, AdressSanitizer...) and other projects (Unity with Burst).

C - Clang C/C++/0bjC LLVM
Frontend X86 Backend
LLVM LLVM
Fortran — Ilvm-gee Frontend Optimizer PowerPC Backend
LLVM
Haskell #| GHC Frontend ARM Backend

Etienne Boespflug

LLVM IR

LLVM IR

The Lazart tool - DSE and multiple fault attacks

—» PowerPC

—» ARM

%mas

2025-2026

Multiple Fault Injection
0O@0000

Representation level

Low-Level Virtual Machine (LLVM)

LLVM [6] is an intermediate representation commonly used for compilers (clang, rustc, Swift,
Julia...), analysis tools (KLEE, AdressSanitizer...) and other projects (Unity with Burst).

Properties

= Infinite number of register (called
temporaries)

= Generic and typed assembly language
= Single Static Assignment (SSA) form [?]

® LLVM-IR used in binary and textual form
between optimisation / analysis pass

Etienne Boespflug

CLOND O WN

-

12
13
14

ool - DSE and multiple fault attacks

Listing: Hello World! program in IR LLVM (LLVM-9)

Q@.str = private unnamed_addr constant [14 x i8]
c"Hello world !\00", align 1
define dso_local 132 @main(i32 %0, i8*x %1) {

%3 = alloca i32, align 4

%4 = alloca i32, align 4

%5 = alloca i8**, align 8

store 132 0, i32x %3, align 4

store i32 %0, i32% %4, align 4

store i8%x %1, i8%x* %5, align 8

% = call i32 (i8%, ...) Oprintf (i8x
getelementptr inbounds ([14 x i8],
x i8]* @.str, i64 0, i64 0)

ret i32 0

}

[14

declare dso_local i32 Q@printf (i8%, ...)

%mas

2025-2026 7/

Multiple Fault Injection
[e] lele]e}

presentation level

Attack model and representation level

Examples:

Etienne Boespfl

Attacker model

Attacker power
Attack Action Attacker
objective model Knowledge
Authenticate with an incorrect PIN ~ The attacker is authenticated on the target system White-box
Prevent the reset of the try counter The attacker manipulates inputs Black-box

The Lazart tool - DSE

multiple fault attacks

%mas

2025-2026

Multiple Fault Injection
00®000
presentation level

Attack model and representation level

Attacker model strongly depends on representation level.

= Comparison of a faulted execution on software-level and physical-level:

lbool compare(uinta_t a1, uints_t- a2,
size_t size
| boolres = rue
f Y .
" [WLED] (1) (P
s N N
)
retum result
b P2 P2
| | | | | | | | | | | | | me
/S I O S I O U N I O DU DU
Fault 1 Fault 2 Fault 3 Fault 4 Fault 2
P1

Position

Etienne Boespfl

The Lazart tool - DSE

multiple fault attacks

Multiple Fault Injection
[e]e] le]e}

presentation level

Binary/architectural fault models

WModels
. . general registers
logical registers g Puredata | -------— memory
flags caches

instruction replacement

instruction replay Schedulin ! i ;

short flow shifting ey fe—| Architecture Opcode instruction skip (NOP)
pipeling flow shifting

more complex schedule effects

Instructions
; . static values changes
hlﬁ%:r;ﬂrecg;i;e; [T it 2 Operands register replacement
%mas
Etienne Boespfl The Lazart tool - DSE multiple fault attacks 2025-2026

Multiple Fault Injection
[e]ele] o}

Representation level

Software fault models

Software fault
models

bit (bset, breset, bili
bylfa (BSR, BRan)) test inversion CFG
multiples bits preserved

Jump (skips) inside

Values

basic block
Indirect operand no basic block
modification then-else added
function skip

function switch

Dala Control Flow

CFG
edges added

arbitrary jumps
instruction insertion

i basic blocks
pointer / indexes modification e —

Aliases

instruction / code insertion
out of bound access instruction replay -~ WS;Q::;"
complex cfg transformations

erimac

multiple fault attacks 2025-2026

Multiple Fault Injection
O0000e

Representation level

aults Models and exploitation

Binary level effects: Software level effects: Exploitation:
m Opcode / Operand replacement = Control Flow modification = Side-channel [13]
12, 4] m Bypassing secure boots [14]
= Data modification: register or m Call graph modification [4] u Privilege escalation [15]
memory mutation [8, 9] . .
i m Variables / address alteration = Buffer overflow [4]
m Instruction replay [10]
m Out of ISA effects [11]
N Perturbation Injection
/ 0x540c: MOV A, RO
/& p-7/------ > fox540d: CMP A, $04h Replace
/ 0x540e: JNC DO
Behavior changee, Fault
= Combining several fault from different fault level allows to create more complex fault models \/
erimac

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2025-2026

DSE and Fault Injection

DSE and Fault Injection
O@00000

Code analysis approaches

Etienne Boespfl

Under-approximation methods

examples: fuzzing, symbolic execution, unit tests.

Al executions
(Analysis

False-negative

Hybrids methods

‘examples: dynamic-symbolic execution
All executions
Analysis

False-negative

<><— False-positive

Over-approximation methods

examples: abstract interpretation

«——— All executions

«— Analysis

False-positive

Exact methods

examples: formal proofs

All executions

Analysis

multiple fault attacks

2025-2026

erimac

12/28

DSE and Fault Injection
[e]e] le]e]ele)

DSE and Fault Injection

Listing: Function example

1 void example(int x, int y) {

2

3 PCy = true

4

5

6 if (x +y > 2) {

7 = Symbolic variables maintain a
8 zZ = 2%x + y; .
9 symbolic memory ¢
10

11 if (z == 20) {

12

13 x = z + 3;

14

15 print(x);

16 }

17 else {

18

19 y *= 2;

20

21 assert(x != 0);

22 }

23 }

24 else {

25

26 foo();

27

28 }

multiple fault attacks 2025-2026

The Lazart tool - DSE

Etienne Boespfl

DSE and Fault Injection
[e]e] le]e]ele)

DSE and Fault Injection

Listing: Function example

1 void example(int x, int y) {

2

3 PCy = true

4 dg ={x = x9. ¥ = ¥o}

5

6 if (x +y > 2) {

7 = Symbolic variables maintain a

8 = 2%xx + y; .

0 oy symbolic memory ¢

. s - 20y < m Path Constraint updated at each
12 branch

13 x =z + 3;

14

15 print(x);

16

17 else {

18

19 y *= 23

20

21 assert(x != 0);

22 }

23 }

24 else {

25

26 foo(); \/
27 } erimac
28 }

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2025-2026

DSE and Fault Injection
[e]e] le]e]ele)

DSE and Fault Injection

Listing: Function example

1 void example(int x, int y) {

2

3 PCy = true

4 b0 ={x = X9, ¥ = Yo}

5

6 if (x +y > 2) {

7 PCi =x +yg > 2 = Symbolic variables maintain a

8 = 2%x + y; .

0 oy symbolic memory ¢

o s - 20y < m Path Constraint updated at each
12 branch

13 x =z + 3;

14

15 print(x);

16

17 else {

18

19 y *= 23

20

21 assert(x != 0);

22 }

23 }

24 else {

25

26 foo(); \/
27 ¥ erimac
28 ¥

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2025-2026

DSE and Fault Injection
[e]e] le]e]ele)

DSE and Fault Injection

Listing: Function example

1 void example(int x, int y) {

2

3 PCy = true

4 b0 ={x = X9, ¥ = Yo}

5

6 if (x +y > 2) {

7 PCi =x +yg > 2 = Symbolic variables maintain a

8 = 2%xx + y; .

0 oy symbolic memory ¢

o s - 20y < m Path Constraint updated at each
12 branch

13 x =z + 3;

14

15 print(x);

16 }

17 else {

18

19 y *= 23

20

21 assert(x != 0);

22 }

23 }

24 else {

25 PCy =xg+yy <2

26 foo(); \/
27 } erimac
28 }

ool - DSE and multiple fault attacks 2025-2026 13/28

Etienne Boespflug

DSE and Fault Injection
[e]e] le]e]ele)

DSE and Fault Injection

Listing: Function example

1 void example(int x, int y) {

2

3 PCy = true

4 dg ={x = x9. ¥ = ¥o}

5

6 if (x +y > 2) {

7 PCi =x +yg > 2 = Symbolic variables maintain a

8 z = 2%xx + y; .

9 b1 = (2= 2 + Y0, X = X0, ¥ — Yo} symbolic memory ¢

i? it (2 == 20) { m Path Constraint updated at each
12 branch

13 x = z + 3;

14

15 print(x);

16

17 else {

18

19 y *= 23

20

21 assert(x != 0);

22 }

23 }

24 else {

25 PCy =xg+yy <2

26 foo(); \/
27 } erimac
28 }

ool - DSE and multiple fault attacks 2025-2026 13/28

Etienne Boespflug

DSE and Fault Injection
[e]e] le]e]ele)

DSE and Fault Injection

Listing: Function example

1 void example(int x, int y) {
2
3 PCy = true
4 dg ={x = x9. ¥ = ¥o}
5
6 if (x +y > 2) {
; PCy LG >2 = Symbolic variables maintain a
z = 2%x + y;)
0 b1 =1z 5 2+ Yor X — Xgr ¥ — Y0} symbolic memory ¢
o s - 20y < m Path Constraint updated at each
12 PCy = PCy A (2x9 + Yo = 20) branch
13 x = z + 3;
14
15 print(x);
16 }
17 else {
18
19 y *= 23
20
21 assert(x != 0);
22 }
23 }
24 else {
25 PCy =xg+yy <2
26 foo(); \/
27 ¥ erimac
28 ¥

ool - DSE and multiple fault attacks 2025-2026 13/28

Etienne Boespflug

DSE and Fault Injection
[e]e] le]e]ele)

DSE and Fault Injection

Listing: Function example

1 void example(int x, int y) {
2
3 PCy = true
4 dg ={x = x9. ¥ = ¥o}
5
6 if (x +y > 2) {
; PCy LG >2 = Symbolic variables maintain a
z = 2%x + y;)
0 b1 =1z 5 2+ Yor X — Xgr ¥ — Y0} symbolic memory ¢
o s - 20y < m Path Constraint updated at each
12 PCy = PCy A (2x9 + Yo = 20) branch
13 x = z + 3;
14
15 print(x);
16 }
17 else {
18 PC3 = PCy A (2xy + yo # 20)
19 y *= 23
20
21 assert(x != 0);
22 }
23 }
24 else {
25 PCy =xg+yy <2
26 foo(); \/
27 ¥ erimac
28 ¥

ool - DSE and multiple fault attacks 2025-2026 13/28

Etienne Boespflug

DSE and Fault Injection
[e]e] le]e]ele)

DSE and Fault Injection

Listing: Function example

1 void example(int x, int y) {

2

3 PCy = true

4 b0 ={x = X9, ¥ = Yo}

5

6 if (x +y > 2) {

7 PCi =x +yg > 2 = Symbolic variables maintain a
8 zZ = 2%x + y; .

9 b1 ={z = 2xg+ Y9, x = X9, ¥ = Yo} SymbOIIC memory ¢
10 :

1 it (e - 200 £ m Path Constraint updated at each
12 PCy = PCy A (2x9 + Yo = 20) branch

13 x =z + 3;

14 dp = {x = 2x9+yp+3, z = 2x9+yg, ¥ — Yo}

15 print (x);

16 }

17 else {

18 PC3 = PCy A (2xy + yo # 20)

19 y *= 2;

20

21 assert(x != 0);

22 }

23 }

24 else {

25 PCy =xg+yy <2

26 £00();

27 ¥

28 ¥

multiple fault attacks 2025-2026

The Lazart tool - DSE

Etienne Boespfl

DSE and Fault Injection
[e]e] le]e]ele)

DSE and Fault Injection

Listing: Function example

1 void example(int x, int y) {

2

3 PCy = true

4 dg ={x = x9. ¥ = ¥o}

5

6 if (x 4y > 2) {

7 PGl =X +y > 2 = Symbolic variables maintain a
8 zZ = 2%x + y; B

9 b1 ={z = 2xg+ Y9, x = X9, ¥ = Yo} Symb0||C memory ¢
10 f

1 it (e - 200 £ m Path Constraint updated at each
12 PCy = PCy A (2X9 + g = 20) branch

13 x =z + 3;

12 o = {x = 2xg+yg+3, z = 2x9+¥y, ¥ — ¥}

15 print (x);

16 }

17 else {

18 PCy = PCy A (2xy + ¥y # 20)

19 y *x= 2;

20 ¢z ={x = X9, ¥ > 2¥, Z = 2xg +)p}

21 assert(x != 0);

22 }

23 }

24 else {

25 PCy =xg+yy <2

26 foo();

27 ¥

28)

The Lazart tool - DSE multiple fault attacks

Etienne Boespfl

DSE and Fault Injection
[e]e] le]e]ele)

DSE and Fault Injection

Listing: Function example

void example(int x, int y) {

PCy = true
dg ={x = x9. ¥ = ¥o}

if (x +y > 2) {
PC{ =Xy +y > 2
z = 2%xx + y;
b1 ={z = 2xg+ Y9, x = X9, ¥ = Yo}

if (z == 20) {
PCy = PCy A (2xy + yg = 20)
x =z + 3;
dp = {x = 2x9+yp+3, z = 2x9+yg, ¥ — Yo}
print (x);
}
else {
PC3 = PCy A (2xg + yp # 20)
y *= 2
¢z ={x = X9, ¥ > 2¥, Z = 2xg +)p}
assert(x != 0);
}
}
else {
PCy =xg+yy <2
foo();
¥

Etienne Boespflug

The Lazart tool - DSE and multiple fault attacks

= Symbolic variables maintain a
symbolic memory ¢

m Path Constraint updated at each
branch
m SMT solver checks satisfiability

Inputs triggering assert(x !'= 0) :
{x=0,y>2 y#20}

%mas

2025-2026 13/28

DSE and Fault Injection
[e]e]e] le]ele)

Satisfiability Modulo Theories

Goal: violate assertion assert(x != 0)

SMT formula (path constraint): .
What is an SMT solver?
(set-logic QF_LIA)
Decides satisfiability of logical formulas over
(declare-const x0 Int) X . . L
(declare-const yO Int) theories (arithmetic, bitvectors, arrays. . .)

(assert (= x0 0)) Example: Z3, STP, CVC5, Yices, Boolector
(assert (> (+ x0 y0) 2))
(assert (mot (= (+ (* 2 x0) y0) 20)))

(check-sat)
(get-model)

Z3 output: Output:

23 assert.smt2 = sat — constraints satisfiable
sat t del exist
(model ® unsat — no moadel exists

(define-fun yO () Int 3)
(define-fun x0 () Int 0)
)

= unknown — cannot conclude

%mas

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2025-2026 14/28

DSE and Fault Injection
[e]e]ele] lele)

Limitations of Dynamic Symbolic Execution

DSE limitations:

= Path explosion problem: may not terminate in programs with complex branching or loop
patterns

= Limited low-level architectural features: external function calls, memory model precision,
and pointer aliasing

= SMT solving limitations: solver timeouts or undecidable queries may result in inconclusive
results

= Concretization: to handle certain operations, DSE may resort to concretization, which may
compromise soundness by missing potential paths

= SE provides sound results but may not be complete in path enumeration = DSE may lose
soundness sometimes (i.e. some concretizations) \/
erimac

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2025-2026 15/28

DSE and Fault Injection
0000080

DSE and Fault Injection attacks

Defi n (Godefroid 2011)

A path constraint PC,, is correct if every model satisfying PC,,, gives entries for an execution following the path w.
A path constraints PC, is complete if every entries following the path w is a model satisfying PC,; .

Listing: Nominal behavior Listing: Faulted behavior

inject = symbolic_bool()
if inject and _fault_count <=
_fault_limit:
_fault_count++
faulted_behavior ()
else:
normal_behavior ()

normal_behavior ()

1
2
3
4
5
6
7

N oo W N e

%mas

Etienne Boespfl The Lazart tool - DSE 026

multiple fault attacks

DSE and Fault Injection
0000080

DSE and Fault Injection attacks

Definition (Godefroid 2011)

A path constraint PC,, is correct if every model satisfying PC,,, gives entries for an execution following the path w.
A path constraints PC, is complete if every entries following the path w is a model satisfying PC,; .

Listing: Nominal behavior Listing: Faulted behavior

inject = symbolic_bool()
if inject and _fault_count <=
_fault_limit:
_fault_count++
faulted_behavior ()
else:
normal_behavior ()

normal_behavior ()

N oo W N e
N oW e

Definition
A faulted path constraint PCLAJ is correct if every model satisfying F'CL@ gives entries and faults for a (faulted) execution following the path

w.

A faulted path constraint PCL’L” is complete if every pair (entries, faults) following the path w is a model satisfying PC{‘UA .
The (faulted) path constraint enumeration PC% is correct if and only if, vpcﬂ € £M, PC% is correct.

The (faulted) path constraint enumeration F’Cﬂ is complete if and only if:

[VPCM € SM, PC"H is complete, and,

m forallpathw € QM, HPC{‘j € M such as PCZ’ gives entries and faults for a (faulted) execution following the path w. /
erimac

Etienne Boespfl The Lazart tool - DSE multiple fault attacks

DSE and Fault Injection
000000

Redundancy / Equivalence

Attack traces are represented as a sequence of nominal and faulted transitions

= Redundancy and equivalence aims to filter attacks for the user in multiple faults

Definition (Redundancy prefix)

An attack a’ is redundant by prefix wrt an attack a if the word of faulted transition of a is a proper prefix of the faulted transition word of a’

Aq ‘ Eault A I } Fault B }

A, ‘ Fault A I }Fault B’} IlFauIt CJ

The Lazart tool - DSE

Etienne Boespf] multiple fault attacks 2025-2026

DSE and Fault Injection
000000

Redundancy / Equivalence

Attack traces are represented as a sequence of nominal and faulted transitions

= Redundancy and equivalence aims to filter attacks for the user in multiple faults

Definition (Redundancy prefix)

An attack a’ is redundant by prefix wrt an attack a if the word of faulted transition of a is a proper prefix of the faulted transition word of a’

A ‘ Fault A I } Fault B }

A, [Fauta | - Fault B | Fault C

Definition (Redundancy subword)
An z;ttack a’ is redundant by subword wrt an attack a if the word of faulted transition of a is a strict subword of the faulted transition word

of &

Ay ‘ Fault A I }‘Fault B }

A; | FaultA | | Fault C | { Faurt B - \/
e - - - erimac

Etienne Boespfl

The Lazart tool - DSE

multiple fault attacks 2025-2026

DSE and Fault Injection
000000

Redundancy / Equivalence

Attack traces are represented as a sequence of nominal and faulted transitions

= Redundancy and equivalence aims to filter attacks for the user in multiple faults

Definition (Equivalence)

An attack a is equivalent to an attack a’ if their sequence of transitions are equal

Definition (Fault-equivalence)
An attack a is equivalent to an attack a’ if their sequence of faulted transitions are equal

A1 |FaultA- } FaultB |

A, |Faulta | Fault B |

Etienne Boespfl The Lazart tool - DSE

multiple fault attacks 2025-2026

The Lazart tool

The Lazart tool
L]

Lazart and robustness evaluation tools

Lazart overview

!
Lazart [12] is an LLVM-level multi-fault robustness evaluation tool based on Dynamic-Symbolic
Execution (KLEE)

— Help developer to develop secure code
— Help auditor to find vulnerabilities
— Help for evaluation of countermeasures schemes

%mas

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2025-2026 18/28

The Lazart tool
L]

Lazart and robustness evaluation tools

Lazart overview

!
Lazart [12] is an LLVM-level multi-fault robustness evaluation tool based on Dynamic-Symbolic
Execution (KLEE)
— Help developer to develop secure code

— Help auditor to find vulnerabilities
— Help for evaluation of countermeasures schemes

Handling multiple faults:
= Support for fault models combination
m Fine description of fault space
= Notion of redundancy and equivalence
%mas

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2025-2026 18/28

The Lazart tool
L]

Lazart and robustness evaluation tools

Lazart overview

!
Lazart [12] is an LLVM-level multi-fault robustness evaluation tool based on Dynamic-Symbolic
Execution (KLEE)
— Help developer to develop secure code

— Help auditor to find vulnerabilities
— Help for evaluation of countermeasures schemes

Handling multiple faults: Fault models
= Support for fault models combination m Test/Branch inversion
m Fine description of fault space = Data mutation (1oad) (symbolic)
= Notion of redundancy and equivalence = Jump
= Switch call \émas

— cover most of high-level fault models

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2025-2026 18/28

The Lazart tool
L]

Lazart's analysis

Attack analysis - verify_pin

= Analysis parameters:

= Inputs: Incorrect PIN

m Attack objective: being authenticated with a
false PIN

m Fault model: up to N test inversions

[Faultimt(N\) [0 [1 [2[3 [4 |
| Attacks o[151 1

%mas

2025-2026 19/28

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks

The Lazart tool
L]

Lazart's analysis

Attack analysis - verify_pin

Figure: The 2-faults attack (Test Inversion)

= Analysis parameters:

= Inputs: Incorrect PIN

m Attack objective: being authenticated with a
false PIN

m Fault model: up to N test inversions

[Faultimt(N\) [0 [1 [2[3 [4 |
| Attacks o[151 1

m A successful 2-order attack (right) inverts the loop’s
condition i < size and the later check
if(i = size) killcard();

erimac

2025-2026 19/28

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks

Lazart's analysis

The Lazart tool
0000000

Lazart: source level analysis for multiple faults injection

Instrumented
program

Attack model
Attack
objectives Fault models

Front-End

(Mutated LLVM
_ Bytecode /

1

Execu

Ve N
Dynamic Symbolic| (" hor togt cases ‘»—»{
tion \ 4

Mutation }1—

/

\

vl Injection Points |
AN /

™

y s N T N\
(\ (Redundancy | (Gountermeasure)
(atta)))
Jusekresuts |\ Cresuts)\ resus

Analysis

Legend:

Inputs

i‘ Qutputs (Results)

Y .
/,1 Intermediate Files

[o tatron

Process ‘

‘ Wolverine (LLVM/C++)

DSE (Klee third party)

erimac

Etienne Boespfl

2025-2026

The Lazart tool
®000000

Lazart's analysis

Program instrumentation

Symbolic input are used for: Listing: Instrumentation example with Lazart

= Symbolic inputs (using

1 int foo(int a, int b)
klee_make_symbolic). 2 1
. . . " 3 if (b == 0)
= Attack objective (predicate verified by 4 return a;
LZ__ORACLE 5 return a / b;
_LzZ__| e 5
m Faults (symbolic boolean determining if the 7)
> . 8 int main() {
fault is activated). 9 int a;
10 int b;
11 // (memory pointer, size, name):
. i 2 klee_make_symbolic (&a, sizeof(a), "a");
Fault can be defined: h ' :
13 klee_make_symbolic (&b, sizeof(b), "b");
i i i 14
= Using Python analysis script (see later). i int result = foo(a, b);
i i 16
= By program instrumentation (for some fault o L2 _ORAGLE(result > 0); // attack objective
models).
18 }

%mas

Etienne Boespflug ool - DSE and multiple fault attacks 2025-2026

The Lazart tool
O@00000

Lazart's analysis

Analysis script example

1 #!/usr/bin/python3

2

3 from lazart.lazart import *

4

5 # Parse CLI parameters

6 params = install_script()

7

8 data_sym = data_model({"vars": { # Ezplicit value description

9 : 0, # len is faulted using fized value.

10 "__sym__" # res is faulted using symbolic wvalue.

11

12

13

14 # Create analysis or load from path if available

15 a = read_or_make(["src/verify_pin.c", "src/main.c"], # Source files
16 functions_list(["verify_pin", "compare"], [ti_model(), data_sym]), # Attack model
17 path="results", # Pass in which analysis file will be stored
18 flags=AnalysisFlag.AttackAnalysis, # Attack analysis (default)
19 compiler_args="-Wall", # Compiler arguments

20 params=params, # Pass CLI params to the analysis

21 klee_args=""

22)

23

24 execute(a) # Ezecute analysis, print results and generate report
25

26 verify.attack_analysis(a)

27 verify.traces_parsing(a)

erimac

Etienne Boespfl The Lazart tool - DSE multiple fault attacks

The Lazart tool
[e]e] le]e]ele)

Lazart's analysis

Injecting a fault - mutation function

1 int lz_mutation_data_i32(int original, int fault_limit, int (*predicate) (int),
const char* ip_name)
2 A
3 int inject, value;
4 klee_make_symbolic (&inject, sizeof (inject), "inject");
5 if (inject && fault < fault_limit){
6 klee_make_symbolic (&value, sizeof (value), "value");
7 klee_assume (predicate(value));
8 fault++;
9 printf (" [FAULT] at %s from %d to %d\n", ip_name, original,
klee_get_value_i32(value));
10 return value;
11 }
12 return original;
13}
m check that a new fault injection should be done
m in the positive case, the injected value should be used instead of the original one
m possibly, the new injected value should satisfy some constraints
|

each injected fault is logged for later processing \/
erimac

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2025-2026 22/28

The Lazart tool
[e]e]e] le]ele)

Lazart's analysis

LLVM mutation example

m Original bytecode = Mutated bytecode
1 [...] 1 [...]
2 %6 = load 1i32x Ytmp, align 4 2 %6 = alloca i32
3 %7 = sext 132 %6 to i64 3 %7 = load i32* Y%tmp, align 4
4 %8 = call i32 Omemcmp(i8x %4, i8x %5, 164 %7) #5 4 %funCall4 = call i32 @lz_mutation_data_i32(i32
5 %9 = icmp ne i32 %8, 0 %7, i32 4, i32 (i32)* Q@P_tmp, i8x
6 br i1 %9, label %bb26, label %bb25 getelementptr inbounds ([9 x i8]% Q@"bb24:

tmp", i32 0, i32 0)) #4

store 132 %funCalld, i32x %6, align 4

%8 = load i32% %6, align 4

%9 = sext i32 %8 to i64

%10 = call i32 Omemcmp(i8* %4, i8% %5, i64 %9)
#5

9 %11 = icmp ne i32 %10, O

10 %12 = sext il %11 to i32

®~N oo

11 %funCall5 = call i32 @lz_mutation_test_inversion
m a fault injection is simulated by a call (132 7412, 132 4, i8x getelementptr
| . inbounds ([5 x i8]* Cmemcmps_s2, i32 0,
to the mutation function i32 0), i8% getelementptr inbounds ([5 x
.. . . i8]* @memcmps_s3, i32 0, i32 0), i8%
m data injection on variable %tmp getelementptr imbounds ([5 x i8]«
. . L i i @memcmps_s4, i32 0, i32 0)) #4
m test inversion : injection on first 12 %13 = icmp ne i32 %funCalls, 0

13 br i1 %13, label %bb26, label %bb25

operand of the instruction br

%mas

Etienne Boespfl The Lazart tool - DSE

026

multiple fault attacks 202

The Lazart tool
[e]e]ele] Jele)

Lazart's analysis

Processing KLEE’s results

Figure: VerifyPIN 2-fault attack graph

m LLVM bytecode provided to Klee is instrumented
with printf to log:
m basic blocks traversed
m faults injected
m others (countermeasures triggered, custom events...)
m traces are obtained from ktests files using Klee’s
replay tools and parsing stdout logs

m traces are then used in subsequent analysis of
Lazart

Figure: VerifyPIN 2-fault attack trace (Python API)

CFG for 'verifyPIN' function V
erimac

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2025-2026 24/28

s_results(analysis) [22]

The Lazart tool

Lazart's analysis

Lazart’s interface

User’s input:
m attack objectives are expressed with
klee_assume

= fault models and fault injection scopes are

defined in a strategy file

m finer granularity with source
instrumentation

Lazart’s other features:
= python API for
® manipulation of analysis and traces

m generation of reports and attacks graphs

m automated countermeasure application
(test duplication, SecSwift)

Etienne Boespflug

0000080

0N oUW N

fault-models:
- &ti

type: test-inversion

- &dl
type: data
var:
- tmp: O
- x: symbolic
- y: symbolic
fault-scope:
functions:
- __all__:

- type: data
all: symbolic

The Lazart tool - DSE and multiple fault attacks

2025-2026

%mas

25/28

The Lazart tool
000000

Lazart's analysis

Demo

LIVE DEMONSTRATION

%mas

ool - DSE and multiple fault attacks 2025-2026 26/28

Etienne Boespflug

Software countermeasures

Software countermeasures
0@00000

Countermeasures

= Countermeasures are software modification that doesn’t change the software
nominal behavior (without fault) but improve software security in case of faults.

m Comparing protected program in multiple fault is not trivial.

m Software countermeasures, three classes:
m Detective countermeasures: some checks are placed in the program to verify some
security properties.

m Infective countermeasures: in case of fault, the result is made unusable.

m Others: complete program modifications etc.

%mas

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2025-2026

Software countermeasures
00e0000

Test Duplication

The Test Duplication generates two detectors for each conditional branch, protecting
against Test Inversion model.

Source CFG Test Duplication Instrumented Test Duplication

o

conpImoN conpImoN

Fase | TRue Fase | TRue
BaFaisaDD! BaTueDD BaFaisaDD! BaTueDD

[“COP X Tiggered” | “COP Y Triggered
conDITion conpmon conDITion

TRUE
OMBB False.

TRUE
cues.
FALSE

BBFalse

%mas

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2025-2026 27

Software countermeasures
[e]e]e] lelele)

Load Duplication

The Load Duplication protect against Data Load model.

Unprotected IP

Protected (depth = 2)
bb_start
satements siements
. | %cond=icmp | stcond = iemp
() | orshcond bo true bb_faise 1p1)| brotcond
A e —— T

bb_TM_1T:
br 3écond bb_TM_2T bb_cm
T I

b_true: b_false:
statements. statements.

Shcond = icmp
br Scond bb_TM_LT bb_TM_1F.
3

. bb. T
(@D P e om

bb_cm:
call countermeasurel);

— (roreum)

lbb_tru
statemens.

statements.

erimac

multiple fault attacks 2025-2026 27

Software countermeasures
[e]e]e]e] lele)

SecSwift Control-Flow

BB1: #f entry
GSR=ID1
if(condition) {

RTS = D1 IDZ goto BB2
Yelse{

RTS = D1 ID3; goto BB3

N

BB2: I/ ID2 BB3: // ID3
GS RTS GSR
rt(GSR == ID2);

SecSwift ControlFlow is one of the 3 parts of SecSwift[16]
m Designed for Control-Flow Integrity (CFI)

m Uses static signature for each basic block and propagate errors

%mas

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2025-2026

Software countermeasures
00000e0

LBH’s countermeasure [5]

1 #define INCR(cnt,val) cnt = cnt + 1;

2 #define CHECK_INCR(cnt,val, cm_id) if(cnt != val) countermeasure(cm_id); \
3 cnt = cnt + 1;

4 [...]

5

6

7 BOOL verifyPIN (unsigned short* CNT_O_VP_1)

8

9 CHECK_INCR(*CNT_O_VP_1, CNT_INIT_VP + O, OLL)

10 g_authenticated = 0;

11 CHECK_INCR(*CNT_O_VP_1, CNT_INIT_VP + 1, 1LL)

12 DECL_INIT(CNT_O_byteArrayCompare_CALLNB_1, CNT_INIT_BAC)

13 CHECK_INCR(*CNT_O_VP_1, CNT_INIT_VP + 2, 2LL)

14 BOOL res = byteArrayCompare (g_userPin, g_cardPin, PIN_SIZE, &CNT_O_byteArrayCompare CALLNB_1);
15 [...1

m Insert step-counters for each C construct
m Checking macros (such as cecx_micr) verify the counters

= Analysis allows to know where the counter verification can be removed

%mas

multiple fault attacks 2025-2026

The Lazart tool - DSE

Etienne Boespfl

Software countermeasures
000000e

Conclusion

= Multi fault make difficult to analyze programs (longer analysis times).

= Fault models depends on the representation level (physical, parchitectural, binary,
software, logical...).

m Lazart uses DSE at LLVM level to produce multiple fault attacks tests cases.

%mas

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2025-2026 28/28

eferences |

@ Louis Dureuil, Guillaume Petiot, Marie-Laure Potet, Thanh-Ha Le, Aude Crohen, and Philippe de Choudens.

FISSC: A Fault Injection and Simulation Secure Collection.

In Computer Safety, Reliability, and Security - 35th International Conference, SAFECOMP 2016, Trondheim,
Norway, September 21-23, 2016, Proceedings, pages 3—11, 2016.

@ Chong Hee Kim and Jean-Jacques Quisquater.

Fault attacks for crt based rsa: New attacks, new results, and new countermeasures.
In IFIP International Workshop on Information Security Theory and Practices, pages 215-228. Springer,

2007.
a Roberto Natella, Domenico Cotroneo, and Henrique S. Madeira.

Assessing Dependability with Software Fault Injection: A Survey.
ACM Computing Surveys, 48(3):1-55, February 2016.

@ Wookey/SSTIC20.

Inter-cesti: Methodological and technical feedbacks on hardware devices evaluations.

https://www.sstic.org/media/SSTIC2020/SSTIC-actes/inter-cesti_methodological_and_
technical_feedbacks/SSTIC2020-Article-inter-cesti_methodological_and_technical_feedbacks_
on_hardware_devices_evaluations-benadjila.pdf, 2020.

@ Jean-Francois Lalande, Karine Heydemann, and Pascal Berthomé.

Software countermeasures for control flow integrity of smart card C codes.

In Pr. of the 19th European Symposium on Research in Computer Security, ESORICS 2014, pages 200-218,
2014.

https://www.sstic.org/media/SSTIC2020/SSTIC-actes/inter-cesti_methodological_and_technical_feedbacks/SSTIC2020-Article-inter-cesti_methodological_and_technical_feedbacks_on_hardware_devices_evaluations-benadjila.pdf
https://www.sstic.org/media/SSTIC2020/SSTIC-actes/inter-cesti_methodological_and_technical_feedbacks/SSTIC2020-Article-inter-cesti_methodological_and_technical_feedbacks_on_hardware_devices_evaluations-benadjila.pdf
https://www.sstic.org/media/SSTIC2020/SSTIC-actes/inter-cesti_methodological_and_technical_feedbacks/SSTIC2020-Article-inter-cesti_methodological_and_technical_feedbacks_on_hardware_devices_evaluations-benadjila.pdf

References Il

a Chris Lattner and Vikram Adve.

LLVM: A compilation framework for lifelong program analysis and transformation.

In CGO, pages 75-88, San Jose, CA, USA, Mar 2004.
ﬁ J. Balasch, B. Gierlichs, and . Verbauwhede.

An in-depth and black-box characterization of the effects of clock glitches on 8-bit mcus.

In 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 105-114, 2011.
@ Johannes Blémer, Martin Otto, and Jean-Pierre Seifert.

A new crt-rsa algorithm secure against bellcore attacks.
In 10th ACM conference on Computer and communications security, CCS '03, page 311-320, New York, NY,

USA, 2003. Association for Computing Machinery.
@ |. Verbauwhede, D. Karaklajic, and J. Schmidt.
The fault attack jungle - a classification model to guide you.
In 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 3-8, 2011.
@ Lionel Riviére, Zakaria Najm, Pablo Rauzy, Jean-Luc Danger, Julien Bringer, and Laurent Sauvage.

High precision fault injections on the instruction cache of armv7-m architectures.
In IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2015, Washington, DC,

USA, 5-7 May, 2015, pages 62-67. IEEE, 2015.
@ J. Laurent, V. Beroulle, C. Deleuze, and F. Pebay-Peyroula.

Fault injection on hidden registers in a risc-v rocket processor and software countermeasures.
In 2019 Design, Automation Test in Europe Conference Exhibition (DATE), pages 252—255, 2019.

eferences llI

ﬁ Marie-Laure Potet, Laurent Mounier, Maxime Puys, and Louis Dureuil.

Lazart: A symbolic approach for evaluation the robustness of secured codes against control flow injections.
In 2014 IEEE Seventh International Conference on Software Testing, Verification and Validation, pages

213-222. |[EEE, 2014.

Eli Biham and Adi Shamir.

Differential fault analysis of secret key cryptosystems.

In Annual international cryptology conference, pages 513-525. Springer, 1997.

Shoei Nashimoto, Naofumi Homma, Yu-ichi Hayashi, Junko Takahashi, Hitoshi Fuji, and Takafumi Aoki.
Buffer overflow attack with multiple fault injection and a proven countermeasure.

Journal of Cryptographic Engineering, 7(1):35-46, 2017.

Niek Timmers, Albert Spruyt, and Marc Witteman.

Controlling pc on arm using fault injection.

In 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pages 25-35. IEEE, 2016.
Francois de Ferriére.

A compiler approach to cyber-security.
2019 European LLVM developers’ meeting, 2019.

) & W & W

Jorn-Marc Schmidt, Michael Hutter, and Thomas Plos.

Optical fault attacks on aes: A threat in violet.
In 2009 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pages 13-22. IEEE, 2009.

eferences |V

ﬁ Michael Hutter and Jérn-Marc Schmidt.

The temperature side channel and heating fault attacks.

In International Conference on Smart Card Research and Advanced Applications, pages 219-235. Springer,
2013.

@ Paul Kocher, Joshua Jaffe, and Benjamin Jun.

Differential power analysis.
In Annual international cryptology conference, pages 388-397. Springer, 1999.

a Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi.
Introduction to differential power analysis.
Journal of Cryptographic Engineering, 1(1):5-27, 2011.

ﬁ Karine Gandolfi, Christophe Mourtel, and Francis Olivier.

Electromagnetic analysis: Concrete results.
In International workshop on cryptographic hardware and embedded systems, pages 251-261. Springer,

2001.
@ Paul C Kocher.

Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems.
In Annual International Cryptology Conference, pages 104—113. Springer, 1996.

a Kris Tiri.

Side-channel attack pitfalls.
In 2007 44th ACM/IEEE Design Automation Conference, pages 15-20. IEEE, 2007.

a Dmitri Asonov and Rakesh Agrawal.

Keyboard acoustic emanations.
In [EEE Symposium on Security and Privacy, 2004. Proceedings. 2004, pages 3—11. IEEE, 2004.

@ Haritabh Gupta, Shamik Sural, Vijayalakshmi Atluri, and Jaideep Vaidya.

A side-channel attack on smartphones: Deciphering key taps using built-in microphones.
Journal of Computer Security, 26(2):255-281, 2018.

@ Dan Boneh, Richard A DeMillo, and Richard J Lipton.

On the importance of checking cryptographic protocols for faults.

In International conference on the theory and applications of cryptographic techniques, pages 37-51.
Springer, 1997.

a Francois Poucheret, Karim Tobich, Mathieu Lisarty, L Chusseauz, B Robissonx, and Philippe Maurine.

Local and direct em injection of power into cmos integrated circuits.
In 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 100-104. IEEE, 2011.

@ Brice Colombier, Alexandre Menu, Jean-Max DUTERTRE, Pierre-Alain Moéllic, Jean-Baptiste Rigaud, and
Jean-Luc Danger.
Laser-induced Single-bit Faults in Flash Memory: Instructions Corruption on a 32-bit Microcontroller.

In 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pages 1-10,
McLean, United States, May 2019. IEEE.

eferences VI

@ Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai,
and Onur Mutlu.
Flipping bits in memory without accessing them: An experimental study of dram disturbance errors.
ACM SIGARCH Computer Architecture News, 42(3):361-372, 2014.

Mark Seaborn and Thomas Dullien.

Exploiting the dram rowhammer bug to gain kernel privileges.
Black Hat, 15:71, 2015.

Bilgiday Yuce, Patrick Schaumont, and Marc Wittenman.

Fault attacks on secure embedded software: Threats, design, and evaluation.
In Journal of Hardware and Systems Security, pages 111-130, 2018.

Cyril Roscian, Alexandre Sarafianos, Jean-Max Dutertre, and Assia Tria.

Fault model analysis of laser-induced faults in sram memory cells.

In 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 89-98. IEEE, 2013.
Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache.

Fault injection attacks on cryptographic devices: Theory, practice, and countermeasures.
Proceedings of the IEEE, 100(11):3056-3076, 2012

) W & W

Alfredo Benso, Paolo Prinetto, Maurizio Rebaudengo, and M Sonza Reorda.

Exfi: a low-cost fault injection system for embedded microprocessor-based boards.
ACM Transactions on Design Automation of Electronic Systems (TODAES), 3(4):626—-634, 1998.

eferences VII

@ Giorgis Georgakoudis, Ignacio Laguna, Dimitrios S Nikolopoulos, and Martin Schulz.

Refine: Realistic fault injection via compiler-based instrumentation for accuracy, portability and speed.
In Proceedings of the International Conference for High Performance Computing, Networking, Storage and

Analysis, pages 1-14, 2017.
a Anna Thomas and Karthik Pattabiraman.

LIfi: An intermediate code level fault injector for soft computing applications.
In Workshop on Silicon Errors in Logic System Effects (SELSE), 2013.

@ Vincent Werner.

Optimiser I'identification et I'exploitation de vulnérabilité a I'injection de faute sur microcontréleurs.
PhD thesis, Université Grenoble Alpes, 2022.

@ Olivier Faurax, Laurent Freund, Assia Tria, Traian Muntean, and Frédéric Bancel.
A generic method for fault injection in circuits.
In 2006 6th International Workshop on System on Chip for Real Time Applications, pages 211-214. IEEE,
2006.

@ Hoang M Le, Vladimir Herdt, Daniel GroB3e, and Rolf Drechsler.

Resilience evaluation via symbolic fault injection on intermediate code.
In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 845-850. IEEE, 2018.

@ Karthik Pattabiraman, Nithin Nakka, Zbigniew Kalbarczyk, and Ravishankar lyer.

Symplfied: Symbolic program-level fault injection and error detection framework.

In Dependable Systems and Networks With FTCS and DCC, 2008. DSN 2008. IEEE International
Conference on, pages 472-481. IEEE, 2008.

References VIlII

@ Guilhem Lacombe, David Feliot, Etienne Boespflug, and Marie-Laure Potet.

Combining static analysis and dynamic symbolic execution in a toolchain to detect fault injection
vulnerabilities.
In PROOFS WORKSHOP (SECURITY PROOFS FOR EMBEDDED SYSTEMS), 2021.

