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Fault injection

Fault Injection

Figure: Laser fault injection bench [1]
Fault-injection attacks

Lasers
Electromagnetic pulses
Temperature

Power & clock glitches

Software induced

Goal: modify device behavior/state to break security property and gain advantage
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Multiple Fault Injection
@0000

Fault injection

Fault Injection

Figure: Rowhammer principle [2]
Fault-injection attacks

Lasers

Electromagnetic pulses

Temperature

Power & clock glitches

Software induced

Goal: modify device behavior/state to break security property and gain advantage
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Multiple Fault Injection
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Fault injection

verify_pin program

PIN verification program from FISSC [1] collection

1 bool compara(uchar* al, uchar* a2, size_t size)

2 o

3 bool ret = true;

4 size_t i = 0;

5 for(; i < size; i++)

6 if(a1lil != a2[il)

7 ret = false; m Compare user PIN against the card’s
8 one in constant time
9 return ret;

10 ¥

11

12 bool verify_pin(ucharx user_pin) { m Attack objective: being authenticated
13 if (try_counter > 0) .

14 if (compare (user_pin, card_pin, PIN_SIZE)) { with a false PIN

15 // Authentication

16 try_counter = 3;

17 return true;

18 } else {

19 try_counter--;

20 return false;

21 }

22 return false;

23}

The Lazart tool - DSE
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Multiple Fault Injection
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Fault injection

Faults injection - Example on verify_pin

PIN verification program from FISSC [1] collection

1 bool compara(uchar* al, uchar* a2, size_t size)

2 {

3 bool ret = true;

4 size_t i = 0;

5 for(; i < size; i++) // Fault: avoid the loop

6 if(a1lil != a2[il)

! ret = false; = Fault model: modelisation of the faults
9 return ret; to be injected

10 b . . .

11 — ex: Test inversion: inverse the
12 bool verify_pin(uchar* user_pin) { branch taken during conditional
13 if (try_counter > 0) branching

14 if (compare (user_pin, card_pin, PIN_SIZE)) {

15 // Authentication

16 try_counter = 3;

17 return true;

18 } else {

19 try_counter--;

20 return false;

21 }

22 return false;

23}
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Multiple Fault Injection
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Fault injection

Faults injection - Example on verify_pin

PIN verification program from FISSC [1] collection

1 bool compare(uchar* al, uchar* a2, size_t size)
2 {

3 bool ret = true;

4 size_t i = 0;

5 for(; i < size; i++) // Fault

6 if (a1li] = a2[i])

7 ret = false;

8

9 if (i != size) // Countermeasure
10 killcard ) ;

11

12 return ret;

13 }

14

15  bool verify_pin(uchar* user_pin) {
16 if (try_counter > 0)

17 if (compare (user_pin, card_pin, PIN_SIZE)) {
18 // Authentication

19 try_counter = 3;

20 return true;

21 } else {

22 try_counter--;

23 return false;

24 }

25 return false;

26 }

Etienne Boespflug

ool - DSE and multiple fault attacks 2025-2026

= Fault model: modelisation of the faults
to be injected

— ex: Test inversion: inverse the
branch taken during conditional
branching

= Software countermeasures
(program transformations) can be
placed to protect against faults
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Multiple Fault Injection
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Fault injection

Faults injection - Example on verify_pin

PIN verification program from FISSC [1] collection

1 bool compare(uchar* al, uchar* a2, size_t size)
2 o
3 bool ret = true; L
4 size_t i = 0; = Fault model: modelisation of the faults
5 for(; i < size; i++) // Fault 1 to be injected
6 if(alfil t= a2[il)
N ret = false; — ex: Test inversion: inverse the
8 . e
9 if (i !'= size) // Fault 2 => countermeasure attack branCh_taken dUrlng condltlonal
10 killcard(); branching
11
12 return ret;
13 }
14 = Software countermeasures (program
15 bool verify_pin(ucharx user_pin) { transformations) can be placed to
16 if (try_counter > 0) .
17 if (compare (user_pin, card_pin, PIN_SIZE)) { protect against faults
i [/ Authentication multiples faults — countermeasures
ry_counter = 3;
20 return true; themselves can be attacked
21 } else {
22 try_counter--;
23 return false;
24 }
25 return false;
26 b
%mas
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Multiple Fault Injection
L]

Multiple faults

Robustness evaluation in multiple faults

State of the art attacks combine several faults to achieve their goal. [2, 3, 4]
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Multiple Fault Injection
L]

Multiple faults

Robustness evaluation in multiple faults

State of the art attacks combine several faults to achieve their goal. [2, 3, 4]

= Comparing the robustness of different protected versions of a program is not trivial
= attack surface paradox [Dureuil 2016]: countermeasure can add attack surface to the code
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Multiple Fault Injection
L]

Multiple faults

Robustness evaluation in multiple faults

State of the art attacks combine several faults to achieve their goal. [2, 3, 4]

= Comparing the robustness of different protected versions of a program is not trivial
= attack surface paradox [Dureuil 2016]: countermeasure can add attack surface to the code
= How to count attacks in case of multiple faults ?
= Which program is the most secure ?
verify_pin version (from FISSC [1]) | countermeasures O-faults | 1-fault | 2-faults | 3-faults | 4-faults
vp_0 0 0 3 0 0 1
vp_1 HB 0 2 0 0
vp_2 HB+FTL 0 2 1 0 1
vp_3 HB+FTL+INL 0 2 1 0 1
vp_4 FTL+INL+DPTC+PTCBK+LC 0 2 0 1 1
vp_5 HB+FTL+DPTC+DC 0 0 4 4 1
vp_6 HB+FTL+INL+DPTC+DT 0 0 3 0 1
vp_7 HB+FTL+INL+DPTC+DT+SC 0 0 2 0 1
Legend:
= HB: hardened booleans = DC: double call
m FTL: fixed time loops m LC: loop counter verification
® INL: inlined function m SC: step counter V
m PTC: try counter decremented first m DT: double test erimac
m PTCBK: try counter backup m CFl: control flow integrity [5]
Etienne Boespflug ool - DSE and multiple fault attacks 2025-2026




Multiple Fault Injection
L]

Multiple faults

Robustness evaluation in multiple faults

State of the art attacks combine several faults to achieve their goal. [2, 3, 4]

= Comparing the robustness of different protected versions of a program is not trivial
= attack surface paradox [Dureuil 2016]: countermeasure can add attack surface to the code
= How to count attacks in case of multiple faults ?
= Which program is the most secure ?
verify_pin version (from FISSC [1]) | countermeasures O-faults | 1-fault | 2-faults | 3-faults | 4-faults
vp_0 0 0 3 0 0 1
vp_1 HB 0 2 0 0
vp_2 HB+FTL 0 2 1 0 1
vp_3 HB+FTL+INL 0 2 1 0 1
vp_4 FTL+INL+DPTC+PTCBK+LC 0 2 0 1 1
vp_5 HB+FTL+DPTC+DC 0 0 4 4 1
vp_6 HB+FTL+INL+DPTC+DT 0 0 3 0 1
vp_7 HB+FTL+INL+DPTC+DT+SC 0 0 2 0 1
Legend:
= HB: hardened booleans = DC: double call
m FTL: fixed time loops m LC: loop counter verification
® INL: inlined function m SC: step counter V
m PTC: try counter decremented first m DT: double test erimac
m PTCBK: try counter backup m CFl: control flow integrity [5]
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Multiple Fault Injection
@00000

Representation level

Low-Level Virtual Machine (LLVM)

LLVM [6] is an intermediate representation commonly used for compilers (clang, rustc, Swift,
Julia...), analysis tools (KLEE, AdressSanitizer...) and other projects (Unity with Burst).

C - Clang C/C++/0bjC LLVM
Frontend X86 Backend
LLVM LLVM
Fortran — Ilvm-gee Frontend Optimizer PowerPC Backend
LLVM
Haskell #| GHC Frontend ARM Backend

Etienne Boespflug

LLVM IR

LLVM IR

The Lazart tool - DSE and multiple fault attacks

—» PowerPC

—» ARM
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Multiple Fault Injection
0O@0000

Representation level

Low-Level Virtual Machine (LLVM)

LLVM [6] is an intermediate representation commonly used for compilers (clang, rustc, Swift,
Julia...), analysis tools (KLEE, AdressSanitizer...) and other projects (Unity with Burst).

Properties

= Infinite number of register (called
temporaries)

= Generic and typed assembly language
= Single Static Assignment (SSA) form [?]

® LLVM-IR used in binary and textual form
between optimisation / analysis pass

Etienne Boespflug

CLOND O WN

-

12
13
14

ool - DSE and multiple fault attacks

Listing: Hello World! program in IR LLVM (LLVM-9)

Q@.str = private unnamed_addr constant [14 x i8]
c"Hello world !\00", align 1
define dso_local 132 @main(i32 %0, i8*x %1) {

%3 = alloca i32, align 4

%4 = alloca i32, align 4

%5 = alloca i8**, align 8

store 132 0, i32x %3, align 4

store i32 %0, i32% %4, align 4

store i8%x %1, i8%x* %5, align 8

% = call i32 (i8%, ...) Oprintf (i8x
getelementptr inbounds ([14 x i8],
x i8]* @.str, i64 0, i64 0)

ret i32 0

}

[14

declare dso_local i32 Q@printf (i8%, ...)

%mas
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Multiple Fault Injection
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presentation level

Attack model and representation level

Examples:

Etienne Boespfl

Attacker model

Attacker power
Attack Action Attacker
objective model Knowledge
Authenticate with an incorrect PIN ~ The attacker is authenticated on the target system White-box
Prevent the reset of the try counter The attacker manipulates inputs Black-box

The Lazart tool - DSE

multiple fault attacks
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Multiple Fault Injection
00®000
presentation level

Attack model and representation level

Attacker model strongly depends on representation level.

= Comparison of a faulted execution on software-level and physical-level:

lbool compare(uinta_t a1, uints_t- a2,
size_t size
| boolres = rue
f Y .
" [WLED] (1) (P
s N N
)
retum result
b P2 P2
| | | | | | | | | | | | | me
/S I O S I O U N I O DU DU
Fault 1 Fault 2 Fault 3 Fault 4 Fault 2
P1

Position

Etienne Boespfl
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Multiple Fault Injection
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presentation level

Binary/architectural fault models

WModels
. . general registers
logical registers g Puredata | -------— memory
flags caches

instruction replacement

instruction replay Schedulin ! i ;

short flow shifting ey fe—| Architecture Opcode instruction skip (NOP)
pipeling flow shifting

more complex schedule effects

Instructions
; . static values changes
hlﬁ%:r;ﬂrecg;i;e; [T it 2 Operands register replacement
%mas
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Multiple Fault Injection
[e]ele] o}

Representation level

Software fault models

Software fault
models

bit (bset, breset, bili
bylfa (BSR, BRan) ) test inversion CFG
multiples bits preserved

Jump (skips) inside

Values

basic block
Indirect operand no basic block
modification then-else added
function skip

function switch

Dala Control Flow

CFG
edges added

arbitrary jumps
instruction insertion

i basic blocks
pointer / indexes modification e —

Aliases

instruction / code insertion
out of bound access instruction replay -~ WS;Q::;"
complex cfg transformations

erimac
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Multiple Fault Injection
O0000e

Representation level

aults Models and exploitation

Binary level effects: Software level effects: Exploitation:
m Opcode / Operand replacement = Control Flow modification = Side-channel [13]
12, 4] m Bypassing secure boots [14]
= Data modification: register or m Call graph modification [4] u Privilege escalation [15]
memory mutation [8, 9] . .
i m Variables / address alteration = Buffer overflow [4]
m Instruction replay [10]
m Out of ISA effects [11]
N Perturbation Injection
/ 0x540c: MOV A, RO
/& p-7/------ > fox540d: CMP A, $04h Replace
/ 0x540e: JNC DO
Behavior changee, Fault
= Combining several fault from different fault level allows to create more complex fault models \/
erimac
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DSE and Fault Injection
O@00000

Code analysis approaches

Etienne Boespfl

Under-approximation methods

examples: fuzzing, symbolic execution, unit tests.

Al executions
( Analysis

False-negative

Hybrids methods

‘examples: dynamic-symbolic execution
All executions
Analysis

False-negative

<><— False-positive

Over-approximation methods

examples: abstract interpretation

«——— All executions

«— Analysis

False-positive

Exact methods

examples: formal proofs

All executions

Analysis

multiple fault attacks

2025-2026

erimac

12/28



DSE and Fault Injection
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DSE and Fault Injection

Listing: Function example

1 void example(int x, int y) {

2

3 PCy = true

4

5

6 if (x +y > 2) {

7 = Symbolic variables maintain a
8 zZ = 2%x + y; .
9 symbolic memory ¢
10

11 if (z == 20) {

12

13 x = z + 3;

14

15 print(x);

16 }

17 else {

18

19 y *= 2;

20

21 assert(x != 0);

22 }

23 }

24 else {

25

26 foo();

27

28 }

multiple fault attacks 2025-2026
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DSE and Fault Injection
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DSE and Fault Injection

Listing: Function example

1 void example(int x, int y) {

2

3 PCy = true

4 dg ={x = x9. ¥ = ¥o}

5

6 if (x +y > 2) {

7 = Symbolic variables maintain a

8 = 2%xx + y; .

0 oy symbolic memory ¢

. s - 20y < m Path Constraint updated at each
12 branch

13 x =z + 3;

14

15 print(x);

16

17 else {

18

19 y *= 23

20

21 assert(x != 0);

22 }

23 }

24 else {

25

26 foo(); \/
27 } erimac
28 }

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2025-2026



DSE and Fault Injection
[e]e] le]e]ele)

DSE and Fault Injection

Listing: Function example

1 void example(int x, int y) {

2

3 PCy = true

4 b0 ={x = X9, ¥ = Yo}

5

6 if (x +y > 2) {

7 PCi =x +yg > 2 = Symbolic variables maintain a

8 = 2%x + y; .

0 oy symbolic memory ¢

o s - 20y < m Path Constraint updated at each
12 branch

13 x =z + 3;

14

15 print(x);

16

17 else {

18

19 y *= 23

20

21 assert(x != 0);

22 }

23 }

24 else {

25

26 foo(); \/
27 ¥ erimac
28 ¥
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DSE and Fault Injection
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DSE and Fault Injection

Listing: Function example

1 void example(int x, int y) {

2

3 PCy = true

4 b0 ={x = X9, ¥ = Yo}

5

6 if (x +y > 2) {

7 PCi =x +yg > 2 = Symbolic variables maintain a

8 = 2%xx + y; .

0 oy symbolic memory ¢

o s - 20y < m Path Constraint updated at each
12 branch

13 x =z + 3;

14

15 print(x);

16 }

17 else {

18

19 y *= 23

20

21 assert(x != 0);

22 }

23 }

24 else {

25 PCy =xg+yy <2

26 foo(); \/
27 } erimac
28 }
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DSE and Fault Injection

Listing: Function example

1 void example(int x, int y) {

2

3 PCy = true

4 dg ={x = x9. ¥ = ¥o}

5

6 if (x +y > 2) {

7 PCi =x +yg > 2 = Symbolic variables maintain a

8 z = 2%xx + y; .

9 b1 = (2= 2 + Y0, X = X0, ¥ — Yo} symbolic memory ¢

i? it (2 == 20) { m Path Constraint updated at each
12 branch

13 x = z + 3;

14

15 print(x);

16

17 else {

18

19 y *= 23

20

21 assert(x != 0);

22 }

23 }

24 else {

25 PCy =xg+yy <2

26 foo(); \/
27 } erimac
28 }
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DSE and Fault Injection
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DSE and Fault Injection

Listing: Function example

1 void example(int x, int y) {
2
3 PCy = true
4 dg ={x = x9. ¥ = ¥o}
5
6 if (x +y > 2) {
; PCy LG >2 = Symbolic variables maintain a
z = 2%x + y; )
0 b1 =1z 5 2+ Yor X — Xgr ¥ — Y0} symbolic memory ¢
o s - 20y < m Path Constraint updated at each
12 PCy = PCy A (2x9 + Yo = 20) branch
13 x = z + 3;
14
15 print(x);
16 }
17 else {
18
19 y *= 23
20
21 assert(x != 0);
22 }
23 }
24 else {
25 PCy =xg+yy <2
26 foo(); \/
27 ¥ erimac
28 ¥
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DSE and Fault Injection
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DSE and Fault Injection

Listing: Function example

1 void example(int x, int y) {
2
3 PCy = true
4 dg ={x = x9. ¥ = ¥o}
5
6 if (x +y > 2) {
; PCy LG >2 = Symbolic variables maintain a
z = 2%x + y; )
0 b1 =1z 5 2+ Yor X — Xgr ¥ — Y0} symbolic memory ¢
o s - 20y < m Path Constraint updated at each
12 PCy = PCy A (2x9 + Yo = 20) branch
13 x = z + 3;
14
15 print(x);
16 }
17 else {
18 PC3 = PCy A (2xy + yo # 20)
19 y *= 23
20
21 assert(x != 0);
22 }
23 }
24 else {
25 PCy =xg+yy <2
26 foo(); \/
27 ¥ erimac
28 ¥
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DSE and Fault Injection
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DSE and Fault Injection

Listing: Function example

1 void example(int x, int y) {

2

3 PCy = true

4 b0 ={x = X9, ¥ = Yo}

5

6 if (x +y > 2) {

7 PCi =x +yg > 2 = Symbolic variables maintain a
8 zZ = 2%x + y; .

9 b1 ={z = 2xg+ Y9, x = X9, ¥ = Yo} SymbOIIC memory ¢
10 :

1 it (e - 200 £ m Path Constraint updated at each
12 PCy = PCy A (2x9 + Yo = 20) branch

13 x =z + 3;

14 dp = {x = 2x9+yp+3, z = 2x9+yg, ¥ — Yo}

15 print (x);

16 }

17 else {

18 PC3 = PCy A (2xy + yo # 20)

19 y *= 2;

20

21 assert(x != 0);

22 }

23 }

24 else {

25 PCy =xg+yy <2

26 £00();

27 ¥

28 ¥

multiple fault attacks 2025-2026
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DSE and Fault Injection
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DSE and Fault Injection

Listing: Function example

1 void example(int x, int y) {

2

3 PCy = true

4 dg ={x = x9. ¥ = ¥o}

5

6 if (x 4y > 2) {

7 PGl =X +y > 2 = Symbolic variables maintain a
8 zZ = 2%x + y; B

9 b1 ={z = 2xg+ Y9, x = X9, ¥ = Yo} Symb0||C memory ¢
10 f

1 it (e - 200 £ m Path Constraint updated at each
12 PCy = PCy A (2X9 + g = 20) branch

13 x =z + 3;

12 o = {x = 2xg+yg+3, z = 2x9+¥y, ¥ — ¥}

15 print (x);

16 }

17 else {

18 PCy = PCy A (2xy + ¥y # 20)

19 y *x= 2;

20 ¢z ={x = X9, ¥ > 2¥, Z = 2xg +)p}

21 assert(x != 0);

22 }

23 }

24 else {

25 PCy =xg+yy <2

26 foo();

27 ¥

28 )

The Lazart tool - DSE multiple fault attacks
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DSE and Fault Injection
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DSE and Fault Injection

Listing: Function example

void example(int x, int y) {

PCy = true
dg ={x = x9. ¥ = ¥o}

if (x +y > 2) {
PC{ =Xy +y > 2
z = 2%xx + y;
b1 ={z = 2xg+ Y9, x = X9, ¥ = Yo}

if (z == 20) {
PCy = PCy A (2xy + yg = 20)
x =z + 3;
dp = {x = 2x9+yp+3, z = 2x9+yg, ¥ — Yo}
print (x);
}
else {
PC3 = PCy A (2xg + yp # 20)
y *= 2
¢z ={x = X9, ¥ > 2¥, Z = 2xg +)p}
assert(x != 0);
}
}
else {
PCy =xg+yy <2
foo();
¥

Etienne Boespflug

The Lazart tool - DSE and multiple fault attacks

= Symbolic variables maintain a
symbolic memory ¢

m Path Constraint updated at each
branch
m SMT solver checks satisfiability

Inputs triggering assert(x !'= 0) :
{x=0,y>2 y#20}
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DSE and Fault Injection
[e]e]e] le]ele)

Satisfiability Modulo Theories

Goal: violate assertion assert(x != 0)

SMT formula (path constraint): .
What is an SMT solver?
(set-logic QF_LIA)
Decides satisfiability of logical formulas over
(declare-const x0 Int) X . . L
(declare-const yO Int) theories (arithmetic, bitvectors, arrays. . .)

(assert (= x0 0)) Example: Z3, STP, CVC5, Yices, Boolector
(assert (> (+ x0 y0) 2))
(assert (mot (= (+ (* 2 x0) y0) 20)))

(check-sat)
(get-model)

Z3 output: Output:

# 23 assert.smt2 = sat — constraints satisfiable
sat t del exist
(model ® unsat — no moadel exists

(define-fun yO () Int 3)
(define-fun x0 () Int 0)
)

= unknown — cannot conclude

%mas
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DSE and Fault Injection
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Limitations of Dynamic Symbolic Execution

DSE limitations:

= Path explosion problem: may not terminate in programs with complex branching or loop
patterns

= Limited low-level architectural features: external function calls, memory model precision,
and pointer aliasing

= SMT solving limitations: solver timeouts or undecidable queries may result in inconclusive
results

= Concretization: to handle certain operations, DSE may resort to concretization, which may
compromise soundness by missing potential paths

= SE provides sound results but may not be complete in path enumeration = DSE may lose
soundness sometimes (i.e. some concretizations) \/
erimac
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DSE and Fault Injection
0000080

DSE and Fault Injection attacks

Defi n (Godefroid 2011)

A path constraint PC,, is correct if every model satisfying PC,,, gives entries for an execution following the path w.
A path constraints PC, is complete if every entries following the path w is a model satisfying PC,; .

Listing: Nominal behavior Listing: Faulted behavior

inject = symbolic_bool()
if inject and _fault_count <=
_fault_limit:
_fault_count++
faulted_behavior ()
else:
normal_behavior ()

normal_behavior ()

1
2
3
4
5
6
7

N oo W N e

%mas
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DSE and Fault Injection
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DSE and Fault Injection attacks

Definition (Godefroid 2011)

A path constraint PC,, is correct if every model satisfying PC,,, gives entries for an execution following the path w.
A path constraints PC, is complete if every entries following the path w is a model satisfying PC,; .

Listing: Nominal behavior Listing: Faulted behavior

inject = symbolic_bool()
if inject and _fault_count <=
_fault_limit:
_fault_count++
faulted_behavior ()
else:
normal_behavior ()

normal_behavior ()

N oo W N e
N oW e

Definition
A faulted path constraint PCLAJ is correct if every model satisfying F'CL@ gives entries and faults for a (faulted) execution following the path

w.

A faulted path constraint PCL’L” is complete if every pair (entries, faults) following the path w is a model satisfying PC{‘UA .
The (faulted) path constraint enumeration PC% is correct if and only if, vpcﬂ € £M, PC% is correct.

The (faulted) path constraint enumeration F’Cﬂ is complete if and only if:

[ VPCM € SM, PC"H is complete, and,

m forallpathw € QM, HPC{‘j € M such as PCZ’ gives entries and faults for a (faulted) execution following the path w. /
erimac
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DSE and Fault Injection
000000

Redundancy / Equivalence

Attack traces are represented as a sequence of nominal and faulted transitions

= Redundancy and equivalence aims to filter attacks for the user in multiple faults

Definition (Redundancy prefix)

An attack a’ is redundant by prefix wrt an attack a if the word of faulted transition of a is a proper prefix of the faulted transition word of a’

Aq ‘ Eault A I } Fault B }

A, ‘ Fault A I }Fault B’} IlFauIt CJ
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DSE and Fault Injection
000000

Redundancy / Equivalence

Attack traces are represented as a sequence of nominal and faulted transitions

= Redundancy and equivalence aims to filter attacks for the user in multiple faults

Definition (Redundancy prefix)

An attack a’ is redundant by prefix wrt an attack a if the word of faulted transition of a is a proper prefix of the faulted transition word of a’

A ‘ Fault A I } Fault B }

A, [Fauta | - Fault B | Fault C

Definition (Redundancy subword)
An z;ttack a’ is redundant by subword wrt an attack a if the word of faulted transition of a is a strict subword of the faulted transition word

of &

Ay ‘ Fault A I }‘Fault B }

A; | FaultA | | Fault C | { Faurt B - \/
e - - - erimac
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DSE and Fault Injection
000000

Redundancy / Equivalence

Attack traces are represented as a sequence of nominal and faulted transitions

= Redundancy and equivalence aims to filter attacks for the user in multiple faults

Definition (Equivalence)

An attack a is equivalent to an attack a’ if their sequence of transitions are equal

Definition (Fault-equivalence)
An attack a is equivalent to an attack a’ if their sequence of faulted transitions are equal

A1 |FaultA- } FaultB |

A, |Faulta | Fault B |
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The Lazart tool
L]

Lazart and robustness evaluation tools

Lazart overview

!
Lazart [12] is an LLVM-level multi-fault robustness evaluation tool based on Dynamic-Symbolic
Execution (KLEE)

— Help developer to develop secure code
— Help auditor to find vulnerabilities
— Help for evaluation of countermeasures schemes

%mas
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The Lazart tool
L]

Lazart and robustness evaluation tools

Lazart overview

!
Lazart [12] is an LLVM-level multi-fault robustness evaluation tool based on Dynamic-Symbolic
Execution (KLEE)
— Help developer to develop secure code

— Help auditor to find vulnerabilities
— Help for evaluation of countermeasures schemes

Handling multiple faults:
= Support for fault models combination
m Fine description of fault space
= Notion of redundancy and equivalence
%mas
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The Lazart tool
L]

Lazart and robustness evaluation tools

Lazart overview

!
Lazart [12] is an LLVM-level multi-fault robustness evaluation tool based on Dynamic-Symbolic
Execution (KLEE)
— Help developer to develop secure code

— Help auditor to find vulnerabilities
— Help for evaluation of countermeasures schemes

Handling multiple faults: Fault models
= Support for fault models combination m Test/Branch inversion
m Fine description of fault space = Data mutation (1oad) (symbolic)
= Notion of redundancy and equivalence = Jump
= Switch call \émas

— cover most of high-level fault models
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The Lazart tool
L]

Lazart's analysis

Attack analysis - verify_pin

= Analysis parameters:

= Inputs: Incorrect PIN

m Attack objective: being authenticated with a
false PIN

m Fault model: up to N test inversions

[Faultimt(N\) [0 [ 1 [2[3 [4 |
| Attacks o[ 151 1

%mas
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The Lazart tool
L]

Lazart's analysis

Attack analysis - verify_pin

Figure: The 2-faults attack (Test Inversion)

= Analysis parameters:

= Inputs: Incorrect PIN

m Attack objective: being authenticated with a
false PIN

m Fault model: up to N test inversions

[Faultimt(N\) [0 [ 1 [2[3 [4 |
| Attacks o[ 151 1

m A successful 2-order attack (right) inverts the loop’s
condition i < size and the later check
if(i = size) killcard();

erimac
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Lazart's analysis

The Lazart tool
0000000

Lazart: source level analysis for multiple faults injection

Instrumented
program

Attack model
Attack
objectives Fault models

Front-End
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The Lazart tool
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Lazart's analysis

Program instrumentation

Symbolic input are used for: Listing: Instrumentation example with Lazart

= Symbolic inputs (using

1 int foo(int a, int b)
klee_make_symbolic). 2 1
. . . " 3 if (b == 0)
= Attack objective (predicate verified by 4 return a;
LZ__ORACLE 5 return a / b;
_LzZ__| e 5
m Faults (symbolic boolean determining if the 7 )
> . 8 int main() {
fault is activated). 9 int a;
10 int b;
11 // (memory pointer, size, name):
. i 2 klee_make_symbolic (&a, sizeof(a), "a");
Fault can be defined: h ' :
13 klee_make_symbolic (&b, sizeof(b), "b");
i i i 14
= Using Python analysis script (see later). i int result = foo(a, b);
i i 16
= By program instrumentation (for some fault o L2 _ORAGLE(result > 0); // attack objective
models).
18 }

%mas
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Lazart's analysis

Analysis script example

1 #!/usr/bin/python3

2

3 from lazart.lazart import *

4

5 # Parse CLI parameters

6 params = install_script()

7

8 data_sym = data_model({"vars": { # Ezplicit value description

9 : 0, # len is faulted using fized value.

10 "__sym__" # res is faulted using symbolic wvalue.

11

12

13

14 # Create analysis or load from path if available

15 a = read_or_make(["src/verify_pin.c", "src/main.c"], # Source files
16 functions_list(["verify_pin", "compare"], [ti_model(), data_sym]), # Attack model
17 path="results", # Pass in which analysis file will be stored
18 flags=AnalysisFlag.AttackAnalysis, # Attack analysis (default)
19 compiler_args="-Wall", # Compiler arguments

20 params=params, # Pass CLI params to the analysis

21 klee_args=""

22 )

23

24 execute(a) # Ezecute analysis, print results and generate report
25

26 verify.attack_analysis(a)

27 verify.traces_parsing(a)

erimac

Etienne Boespfl The Lazart tool - DSE multiple fault attacks



The Lazart tool
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Lazart's analysis

Injecting a fault - mutation function

1 int lz_mutation_data_i32(int original, int fault_limit, int (*predicate) (int),
const char* ip_name)
2 A
3 int inject, value;
4 klee_make_symbolic (&inject, sizeof (inject), "inject");
5 if (inject && fault < fault_limit){
6 klee_make_symbolic (&value, sizeof (value), "value");
7 klee_assume (predicate(value));
8 fault++;
9 printf (" [FAULT] at %s from %d to %d\n", ip_name, original,
klee_get_value_i32(value));
10 return value;
11 }
12 return original;
13}
m check that a new fault injection should be done
m in the positive case, the injected value should be used instead of the original one
m possibly, the new injected value should satisfy some constraints
|

each injected fault is logged for later processing \/
erimac
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The Lazart tool
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Lazart's analysis

LLVM mutation example

m Original bytecode = Mutated bytecode
1 [...] 1 [...]
2 %6 = load 1i32x Ytmp, align 4 2 %6 = alloca i32
3 %7 = sext 132 %6 to i64 3 %7 = load i32* Y%tmp, align 4
4 %8 = call i32 Omemcmp(i8x %4, i8x %5, 164 %7) #5 4 %funCall4 = call i32 @lz_mutation_data_i32(i32
5 %9 = icmp ne i32 %8, 0 %7, i32 4, i32 (i32)* Q@P_tmp, i8x
6 br i1 %9, label %bb26, label %bb25 getelementptr inbounds ([9 x i8]% Q@"bb24:

tmp", i32 0, i32 0)) #4

store 132 %funCalld, i32x %6, align 4

%8 = load i32% %6, align 4

%9 = sext i32 %8 to i64

%10 = call i32 Omemcmp(i8* %4, i8% %5, i64 %9)
#5

9 %11 = icmp ne i32 %10, O

10 %12 = sext il %11 to i32

®~N oo

11 %funCall5 = call i32 @lz_mutation_test_inversion
m a fault injection is simulated by a call (132 7412, 132 4, i8x getelementptr
| . inbounds ([5 x i8]* Cmemcmps_s2, i32 0,
to the mutation function i32 0), i8% getelementptr inbounds ([5 x
.. . . i8]* @memcmps_s3, i32 0, i32 0), i8%
m data injection on variable %tmp getelementptr imbounds ([5 x i8]«
. . L i i @memcmps_s4, i32 0, i32 0)) #4
m test inversion : injection on first 12 %13 = icmp ne i32 %funCalls, 0

13 br i1 %13, label %bb26, label %bb25

operand of the instruction br

%mas
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The Lazart tool
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Lazart's analysis

Processing KLEE’s results

Figure: VerifyPIN 2-fault attack graph

m LLVM bytecode provided to Klee is instrumented
with printf to log:
m basic blocks traversed
m faults injected
m others (countermeasures triggered, custom events...)
m traces are obtained from ktests files using Klee’s
replay tools and parsing stdout logs

m traces are then used in subsequent analysis of
Lazart

Figure: VerifyPIN 2-fault attack trace (Python API)

CFG for 'verifyPIN' function V
erimac
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The Lazart tool

Lazart's analysis

Lazart’s interface

User’s input:
m attack objectives are expressed with
klee_assume

= fault models and fault injection scopes are

defined in a strategy file

m finer granularity with source
instrumentation

Lazart’s other features:
= python API for
® manipulation of analysis and traces

m generation of reports and attacks graphs

m automated countermeasure application
(test duplication, SecSwift)

Etienne Boespflug
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0N oUW N

fault-models:
- &ti

type: test-inversion

- &dl
type: data
var:
- tmp: O
- x: symbolic
- y: symbolic
fault-scope:
functions:
- __all__:

- type: data
all: symbolic
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Lazart's analysis

Demo

LIVE DEMONSTRATION

%mas
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Software countermeasures
0@00000

Countermeasures

= Countermeasures are software modification that doesn’t change the software
nominal behavior (without fault) but improve software security in case of faults.

m Comparing protected program in multiple fault is not trivial.

m Software countermeasures, three classes:
m Detective countermeasures: some checks are placed in the program to verify some
security properties.

m Infective countermeasures: in case of fault, the result is made unusable.

m Others: complete program modifications etc.

%mas
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Software countermeasures
00e0000

Test Duplication

The Test Duplication generates two detectors for each conditional branch, protecting
against Test Inversion model.

Source CFG Test Duplication Instrumented Test Duplication

o

conpImoN conpImoN

Fase | TRue Fase | TRue
BaFaisaDD! BaTueDD BaFaisaDD! BaTueDD

[ “COP X Tiggered” | “COP Y Triggered
conDITion conpmon conDITion

TRUE
OMBB False.

TRUE
cues.
FALSE

BBFalse

%mas
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Software countermeasures
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Load Duplication

The Load Duplication protect against Data Load model.

Unprotected IP

Protected (depth = 2)
bb_start
satements siements
. | %cond=icmp | stcond = iemp
() | orshcond bo true bb_faise 1p1 )| brotcond
A e —— T

bb_TM_1T:
br 3écond bb_TM_2T bb_cm
T I

b_true: b_false:
statements. statements.

Shcond = icmp
br Scond bb_TM_LT bb_TM_1F.
3

. bb. T
(@D P e om

bb_cm:
call countermeasurel);

— (roreum)

lbb_tru
statemens.

statements.

erimac
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Software countermeasures
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SecSwift Control-Flow

BB1: #f entry
GSR=ID1
if(condition) {

RTS = D1 IDZ goto BB2
Yelse{

RTS = D1 ID3; goto BB3

N

BB2: I/ ID2 BB3: // ID3
GS RTS GSR
rt(GSR == ID2);

SecSwift ControlFlow is one of the 3 parts of SecSwift[16]
m Designed for Control-Flow Integrity (CFI)

m Uses static signature for each basic block and propagate errors

%mas
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LBH’s countermeasure [5]

1 #define INCR(cnt,val) cnt = cnt + 1;

2 #define CHECK_INCR(cnt,val, cm_id) if(cnt != val) countermeasure(cm_id); \
3 cnt = cnt + 1;

4 [...]

5

6

7 BOOL verifyPIN (unsigned short* CNT_O_VP_1)

8

9 CHECK_INCR(*CNT_O_VP_1, CNT_INIT_VP + O, OLL)

10 g_authenticated = 0;

11 CHECK_INCR(*CNT_O_VP_1, CNT_INIT_VP + 1, 1LL)

12 DECL_INIT(CNT_O_byteArrayCompare_CALLNB_1, CNT_INIT_BAC)

13 CHECK_INCR(*CNT_O_VP_1, CNT_INIT_VP + 2, 2LL)

14 BOOL res = byteArrayCompare (g_userPin, g_cardPin, PIN_SIZE, &CNT_O_byteArrayCompare CALLNB_1);
15 [...1

m Insert step-counters for each C construct
m Checking macros (such as cecx_micr) verify the counters

= Analysis allows to know where the counter verification can be removed

%mas
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Software countermeasures
000000e

Conclusion

= Multi fault make difficult to analyze programs (longer analysis times).

= Fault models depends on the representation level (physical, parchitectural, binary,
software, logical...).

m Lazart uses DSE at LLVM level to produce multiple fault attacks tests cases.

%mas
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