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Fault injection
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Figure: Laser fault injection bench [1]

Goal : modify device behavior/state to break security property and gain advantage
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Fault injection

Fault Injection

Fault-injection attacks

Lasers

Electromagnetic pulses

Temperature

Power & clock glitches

Software induced

Figure: Rowhammer principle [2]

Goal : modify device behavior/state to break security property and gain advantage
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Fault injection

verify_pin program

PIN verification program from FISSC [1] collection

1 bool compare(uchar* a1, uchar* a2 , size_t size)
2 {
3 bool ret = true;
4 size_t i = 0;
5 for(; i < size; i++)
6 if(a1[i] != a2[i])
7 ret = false;
8
9 return ret;
10 }
11
12 bool verify_pin(uchar* user_pin) {
13 if(try_counter > 0)
14 if(compare(user_pin , card_pin , PIN_SIZE)) {
15 // Authentication
16 try_counter = 3;
17 return true;
18 } else {
19 try_counter --;
20 return false;
21 }
22 return false;
23 }

Compare user PIN against the card’s
one in constant time

Attack objective: being authenticated
with a false PIN
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Fault injection

Faults injection - Example on verify_pin

PIN verification program from FISSC [1] collection

1 bool compare(uchar* a1, uchar* a2 , size_t size)
2 {
3 bool ret = true;
4 size_t i = 0;
5 for(; i < size; i++) // Fault: avoid the loop
6 if(a1[i] != a2[i])
7 ret = false;
8
9 return ret;
10 }
11
12 bool verify_pin(uchar* user_pin) {
13 if(try_counter > 0)
14 if(compare(user_pin , card_pin , PIN_SIZE)) {
15 // Authentication
16 try_counter = 3;
17 return true;
18 } else {
19 try_counter --;
20 return false;
21 }
22 return false;
23 }

Fault model: modelisation of the faults
to be injected

→ ex: Test inversion: inverse the
branch taken during conditional
branching
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Fault injection

Faults injection - Example on verify_pin

PIN verification program from FISSC [1] collection

1 bool compare(uchar* a1, uchar* a2 , size_t size)
2 {
3 bool ret = true;
4 size_t i = 0;
5 for(; i < size; i++) // Fault
6 if(a1[i] != a2[i])
7 ret = false;
8
9 if(i != size) // Countermeasure
10 killcard ();
11
12 return ret;
13 }
14
15 bool verify_pin(uchar* user_pin) {
16 if(try_counter > 0)
17 if(compare(user_pin , card_pin , PIN_SIZE)) {
18 // Authentication
19 try_counter = 3;
20 return true;
21 } else {
22 try_counter --;
23 return false;
24 }
25 return false;
26 }

Fault model: modelisation of the faults
to be injected

→ ex: Test inversion: inverse the
branch taken during conditional
branching

Software countermeasures
(program transformations) can be
placed to protect against faults
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Fault injection

Faults injection - Example on verify_pin

PIN verification program from FISSC [1] collection

1 bool compare(uchar* a1, uchar* a2 , size_t size)
2 {
3 bool ret = true;
4 size_t i = 0;
5 for(; i < size; i++) // Fault 1
6 if(a1[i] != a2[i])
7 ret = false;
8
9 if(i != size) // Fault 2 => countermeasure attack
10 killcard ();
11
12 return ret;
13 }
14
15 bool verify_pin(uchar* user_pin) {
16 if(try_counter > 0)
17 if(compare(user_pin , card_pin , PIN_SIZE)) {
18 // Authentication
19 try_counter = 3;
20 return true;
21 } else {
22 try_counter --;
23 return false;
24 }
25 return false;
26 }

Fault model: modelisation of the faults
to be injected

→ ex: Test inversion: inverse the
branch taken during conditional
branching

Software countermeasures (program
transformations) can be placed to
protect against faults

multiples faults → countermeasures
themselves can be attacked
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Multiple faults

Robustness evaluation in multiple faults

State of the art attacks combine several faults to achieve their goal. [2, 3, 4]

Comparing the robustness of different protected versions of a program is not trivial

⇒ attack surface paradox [Dureuil 2016] : countermeasure can add attack surface to the code

How to count attacks in case of multiple faults ?

⇒ Which program is the most secure ?
Legend:

HB: hardened booleans

FTL: fixed time loops

INL: inlined function

PTC: try counter decremented first

PTCBK: try counter backup

DC: double call

LC: loop counter verification

SC: step counter

DT: double test

CFI: control flow integrity [5]
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⇒ attack surface paradox [Dureuil 2016] : countermeasure can add attack surface to the code

How to count attacks in case of multiple faults ?
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Representation level

Low-Level Virtual Machine (LLVM)

LLVM [6] is an intermediate representation commonly used for compilers (clang, rustc, Swift,
Julia...), analysis tools (KLEE, AdressSanitizer...) and other projects (Unity with Burst).

Properties

Infinite number of register (called
temporaries

Generic and typed assembly language

Single Static Assignment (SSA) form [?]

LLVM-IR used in binary and textual form
between optimisation / analysis pass

Listing: Hello World! program in IR LLVM (LLVM-9)

1 @.str = private unnamed_addr constant [14 x i8]
c"Hello world !\00", align 1

2
3 define dso_local i32 @main(i32 %0, i8** %1) {
4 %3 = alloca i32 , align 4
5 %4 = alloca i32 , align 4
6 %5 = alloca i8**, align 8
7 store i32 0, i32* %3, align 4
8 store i32 %0, i32* %4, align 4
9 store i8** %1, i8*** %5, align 8

10 %6 = call i32 (i8*, ...) @printf(i8*
getelementptr inbounds ([14 x i8], [14
x i8]* @.str , i64 0, i64 0))

11 ret i32 0
12 }
13
14 declare dso_local i32 @printf(i8*, ...)
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Representation level

Attack model and representation level
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Representation level

Attack model and representation level

Attacker model strongly depends on representation level.

Comparison of a faulted execution on software-level and physical-level:
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Representation level

Binary/architectural fault models
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Representation level

Software fault models
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Representation level

Faults Models and exploitation

Binary level effects:

Opcode / Operand replacement
[7]

Data modification: register or
memory mutation [8, 9]

Instruction replay [10]

Out of ISA effects [11]

Software level effects:

Control Flow modification
[12, 4]

Call graph modification [4]

Variables / address alteration
[5]

Exploitation:

Side-channel [13]

Bypassing secure boots [14]

Privilege escalation [15]

Buffer overflow [4]

⇒ Combining several fault from different fault level allows to create more complex fault models.

Etienne Boespflug The Lazart tool - DSE and multiple fault attacks 2024-2025 10 / 25



Outline

1 Multiple Fault Injection

2 DSE and Fault Injection

3 The Lazart tool

4 Software countermeasures



Multiple Fault Injection DSE and Fault Injection The Lazart tool Software countermeasures References

Code analysis approaches
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Dynamic Symbolic Execution

Formal method based on execution of the program using symbolic variables

Listing: Function example

1 void example(int x, int y) {
σ = { x → x0, y → y0 }

2 PC0 ≡ true
3 if (x + y > 2) { PC1 ≡ x0 + y0 > 2
4 z = 2*x + y;

σ = {z → 2∗x0 +y0, x → x0, y → y0}
5 if (z == 20) {

PC2 ≡ x0 + y0 > 2 ∧ 2 ∗ x0 + y0 = 20
6 x = z + 3;

σ = { z → 2 ∗ x0 + y0, x →
2 ∗ x0 + y0 + 3, y → y0 }

7 print(x);
8 }
9 else { PC3 ≡ x0 + y0 > 2 ∧ 2 ∗ x0 + y0 ̸= 20
10 y *= 2; σ = { z →

2 ∗ x0 + y0, x → x0, y → 2 ∗ y0 }
11 assert(x != 0);
12 }
13 }
14 else { PC4 ≡ x0 + y0 <= 2
15 foo();
16 }
17 }

Variables can be evaluated symbolicaly, maintaining a
symbolic memory state σ

Each time a condition is encountered, the execution is forked
with the Path Constraint (PC) updated

→ a SMT solver is called to check if the PC of the path is
satisfiable

Find entry that trigger the assert (x != 0) → solve the PC: [5, 10]
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DSE and Fault Injection attacks

Definition (Godefroid 2011)

A path constraint PCω is correct if every model satisfying PCω gives entries for an execution following the path ω.
A path constraints PCω is complete if every entries following the path ω is a model satisfying PCω .

Listing: Nominal behavior

1 normal_behavior ()
2
3
4
5
6
7

Listing: Faulted behavior

1 inject = symbolic_bool ()
2 if inject and _fault_count <=
3 _fault_limit:
4 _fault_count++
5 faulted_behavior ()
6 else:
7 normal_behavior ()

Definition
A faulted path constraint PCM

ω is correct if every model satisfying PCM
ω gives entries and faults for a (faulted) execution following the path

ω.
A faulted path constraint PCM

ω is complete if every pair (entries, faults) following the path ω is a model satisfying PCM
ω .

The (faulted) path constraint enumeration PCM
ω is correct if and only if, ∀PCM

ω ∈ EM , PCM
ω is correct.

The (faulted) path constraint enumeration PCM
ω is complete if and only if:

∀PCM
ω ∈ EM , PCM

ω is complete, and,

for all path ω ∈ ΩM , ∃PCM
ω ∈ EM such as PCM

ω gives entries and faults for a (faulted) execution following the path ω.
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Redundancy / Equivalence

Attack traces are represented as a sequence of nominal and faulted transitions

Redundancy and equivalence aims to filter attacks for the user in multiple faults

Definition (Redundancy prefix)

An attack a′ is redundant by prefix wrt an attack a if the word of faulted transition of a is a proper prefix of the faulted transition word of a′
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Redundancy / Equivalence

Attack traces are represented as a sequence of nominal and faulted transitions

Redundancy and equivalence aims to filter attacks for the user in multiple faults

Definition (Redundancy prefix)

An attack a′ is redundant by prefix wrt an attack a if the word of faulted transition of a is a proper prefix of the faulted transition word of a′

Definition (Redundancy subword)

An attack a′ is redundant by subword wrt an attack a if the word of faulted transition of a is a strict subword of the faulted transition word
of a′
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Redundancy / Equivalence

Attack traces are represented as a sequence of nominal and faulted transitions

Redundancy and equivalence aims to filter attacks for the user in multiple faults

Definition (Equivalence)

An attack a is equivalent to an attack a′ if their sequence of transitions are equal

Definition (Fault-equivalence)

An attack a is equivalent to an attack a′ if their sequence of faulted transitions are equal
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Lazart and robustness evaluation tools

Lazart overview

Lazart [12] is an LLVM-level multi-fault robustness evaluation tool based on Dynamic-Symbolic
Execution (KLEE)

→ Help developer to develop secure code

→ Help auditor to find vulnerabilities

→ Help for evaluation of countermeasures schemes

Handling multiple faults:

Support for fault models combination

Fine description of fault space

Notion of redundancy and equivalence

Fault models

Test/Branch inversion

Data mutation (load) (symbolic)

Jump

Switch call

→ cover most of high-level fault models
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Lazart’s analysis

Attack analysis - verify_pin

Analysis parameters:

Inputs: Incorrect PIN
Attack objective: being authenticated with a
false PIN
Fault model: up to N test inversions

Fault limit (N) 0 1 2 3 4
Attacks 0 1 5 10 11

A successful 2-order attack (right) inverts the loop’s
condition i < size and the later check
if(i != size) killcard();

→ How to simplify the attacks presented to the user in
multiple faults ?

Figure: The 2-faults attack (Test Inversion)
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Lazart’s analysis

Lazart: source level analysis for multiple faults injection
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Lazart’s analysis

Program instrumentation

Symbolic input are used for:

Symbolic inputs (using
klee_make_symbolic).

Attack objective (predicate verified by
_LZ__ORACLE

Faults (symbolic boolean determining if the
fault is activated).

Fault can be defined:

Using Python analysis script (see later).

By program instrumentation (for some fault
models).

Listing: Instrumentation example with Lazart

1 int foo(int a, int b)
2 {
3 if(b == 0)
4 return a;
5 return a / b;
6 }
7
8 int main() {
9 int a;

10 int b;
11 // (memory pointer , size , name):
12 klee_make_symbolic (&a, sizeof(a), "a");
13 klee_make_symbolic (&b, sizeof(b), "b");
14
15 int result = foo(a, b);
16
17 _LZ__ORACLE(result > 0); // attack objective

.
18 }
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Lazart’s analysis

Analysis script example

1 #!/usr/bin/python3
2
3 from lazart.lazart import *
4
5 # Parse CLI parameters
6 params = install_script()
7
8 data_sym = data_model({"vars": { # Explicit value description
9 "len": 0, # len is faulted using fixed value.

10 "res": "__sym__" # res is faulted using symbolic value.
11 }})
12
13
14 # Create analysis or load from path if available
15 a = read_or_make(["src/verify_pin.c", "src/main.c"], # Source files
16 functions_list(["verify_pin", "compare"], [ti_model(), data_sym]), # Attack model
17 path="results", # Pass in which analysis file will be stored
18 flags=AnalysisFlag.AttackAnalysis, # Attack analysis (default)
19 compiler_args="-Wall", # Compiler arguments
20 params=params, # Pass CLI params to the analysis
21 klee_args=""
22 )
23
24 execute(a) # Execute analysis, print results and generate report
25
26 verify.attack_analysis(a)
27 verify.traces_parsing(a)
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Lazart’s analysis

Injecting a fault - mutation function

1 int lz_mutation_data_i32(int original , int fault_limit , int (* predicate)(int),
const char* ip_name)

2 {
3 int inject , value;
4 klee_make_symbolic (&inject , sizeof(inject), "inject");
5 if (inject && fault < fault_limit){
6 klee_make_symbolic (&value , sizeof(value), "value");
7 klee_assume(predicate(value));
8 fault ++;
9 printf("[FAULT] at %s from %d to %d\n", ip_name , original ,

klee_get_value_i32(value));
10 return value;
11 }
12 return original;
13 }

check that a new fault injection should be done

in the positive case, the injected value should be used instead of the original one

possibly, the new injected value should satisfy some constraints

each injected fault is logged for later processing
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Lazart’s analysis

LLVM mutation example

Original bytecode

1 [...]
2 %6 = load i32* %tmp , align 4
3 %7 = sext i32 %6 to i64
4 %8 = call i32 @memcmp(i8* %4, i8* %5, i64 %7) #5
5 %9 = icmp ne i32 %8, 0
6 br i1 %9, label %bb26 , label %bb25

a fault injection is simulated by a call
to the mutation function

data injection on variable %tmp

test inversion : injection on first
operand of the instruction br

Mutated bytecode

1 [...]
2 %6 = alloca i32
3 %7 = load i32* %tmp , align 4
4 %funCall4 = call i32 @lz_mutation_data_i32(i32

%7, i32 4, i32 (i32)* @P_tmp , i8*
getelementptr inbounds ([9 x i8]* @"bb24:
tmp", i32 0, i32 0)) #4

5 store i32 %funCall4 , i32* %6, align 4
6 %8 = load i32* %6, align 4
7 %9 = sext i32 %8 to i64
8 %10 = call i32 @memcmp(i8* %4, i8* %5, i64 %9)

#5
9 %11 = icmp ne i32 %10, 0

10 %12 = sext i1 %11 to i32
11 %funCall5 = call i32 @lz_mutation_test_inversion

(i32 %12, i32 4, i8* getelementptr
inbounds ([5 x i8]* @memcmps_s2 , i32 0,
i32 0), i8* getelementptr inbounds ([5 x
i8]* @memcmps_s3 , i32 0, i32 0), i8*
getelementptr inbounds ([5 x i8]*
@memcmps_s4 , i32 0, i32 0)) #4

12 %13 = icmp ne i32 %funCall5 , 0
13 br i1 %13, label %bb26 , label %bb25
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Lazart’s analysis

Processing KLEE’s results

LLVM bytecode provided to Klee is instrumented
with printf to log:

basic blocks traversed
faults injected
others (countermeasures triggered, custom events...)

traces are obtained from ktests files using Klee’s
replay tools and parsing stdout logs

traces are then used in subsequent analysis of
Lazart

Figure: VerifyPIN 2-fault attack trace (Python API)

Figure: VerifyPIN 2-fault attack graph
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Lazart’s analysis

Lazart’s interface

User’s input:
attack objectives are expressed with
klee_assume

fault models and fault injection scopes are
defined in a strategy file

finer granularity with source
instrumentation

Lazart’s other features:
python API for

manipulation of analysis and traces
generation of reports and attacks graphs

automated countermeasure application
(test duplication, SecSwift)

1 fault-models:
2 - &ti
3 type: test-inversion
4 - &dl
5 type: data
6 var:
7 - tmp: 0
8 - x: symbolic
9 - y: symbolic

10 fault-scope:
11 functions:
12 - __all__:
13 - *ti
14 - foo:
15 - type: data
16 all: symbolic
17 - bar:
18 - *dl
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Lazart’s analysis

Demo

LIVE DEMONSTRATION
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Countermeasures

Countermeasures are software modification that doesn’t change the software
nominal behavior (without fault) but improve software security in case of faults.

Comparing protected program in multiple fault is not trivial.

Software countermeasures, three classes:
Detective countermeasures: some checks are placed in the program to verify some
security properties. Detection is represented in Lazart using _LZ__CM(); function.

Infective countermeasures: in case of fault, the result is made unusable.

Others: complete program modifications etc.
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Test Duplication

The Test Duplication generates two detectors for each conditional branch.
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SecSwift Control-Flow

SecSwift ControlFlow is one of the 3 parts of SecSwift[16]

Designed for Control-Flow Integrity (CFI)

Uses static signature for each basic block and propagate errors

Each secswift_assert is a detector
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LBH’s countermeasure [5]

1 #define INCR(cnt ,val) cnt = cnt + 1;
2 #define CHECK_INCR(cnt ,val , cm_id) if(cnt != val) countermeasure(cm_id); \
3 cnt = cnt + 1;
4 [...]
5
6
7 BOOL verifyPIN(unsigned short* CNT_0_VP_1)
8 {
9 CHECK_INCR(*CNT_0_VP_1, CNT_INIT_VP + 0, 0LL)

10 g_authenticated = 0;
11 CHECK_INCR(*CNT_0_VP_1, CNT_INIT_VP + 1, 1LL)
12 DECL_INIT(CNT_0_byteArrayCompare_CALLNB_1, CNT_INIT_BAC)
13 CHECK_INCR(*CNT_0_VP_1, CNT_INIT_VP + 2, 2LL)
14 BOOL res = byteArrayCompare(g_userPin , g_cardPin , PIN_SIZE, &CNT_0_byteArrayCompare_CALLNB_1);
15 [...]

Insert step-counters for each C construct

Checking macros (such as CHECK_INCR) are detectors

Analysis allows to know where the counter verification can be removed
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Conclusion

Multi fault make difficult to analyze programs (longer analysis times).

Fault models depends on the representation level (physical, µarchitectural, binary,
software, logcal...).

Lazart uses DSE at LLVM level to produce multiple fault attacks tests cases.
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