UGA - UFR IM?AG — M2 CCI 2025 — 2026 - Algorithmique : AL, devoir surveillé 2

M2 CCI - Algorithmique — Devoir surveillé 2 U GA

UFR

IMZAG Université
Grenoble Alpes

Durée 2h, sans documents 4 décembre 2025

NE PAS RECOPIER les énoncés des questions. Ne pas perdre de temps a un soin excessif de
la présentation. Les questions sont indépendantes. Le baréeme est indicatif.

1. A propos de séquences d'entiers (représentation contigué de séquences)
On traite des séquences d'entiers représentées sous forme contigué€ avec longueur explicite :
Lmax : constante de type entier > 0 {longueur maximum des séquences considérées)

Q1 [4 points]
On spécifie les deux fonctions suivantes :
PrésentUneSeuleFois : fonction (E : entier, T : tableau sur [1...Lmax] d'entier,
L : entier sur [0...Lmax]) — booléen
{vrai si et seulement si l'entier E est présent une fois et une seule dans la séquence
représentée dans le tableau T entre 1 et L.}

Exemple : si la séquence est [3, 10, 2, 7, 25, 3, 10, 7, 1], représentée avec ces valeurs dans T
et de longueur L. = 9, alors :

PrésentUneSeuleFois (2, T, L) = vrai car 2 n’apparait qu’une seule fois

PrésentUneSeuleFois (10, T, L) = faux car 10 apparait 2 fois

TousPrésentsUneSeuleFois : fonction (TR : tableau sur [1...Lmax] d'entier,

LR : entier sur [0...Lmax],

TS : tableau sur [1...Lmax] d'entier,

LS : entier sur [0...Lmax]) — booléen
{vrai si et seulement chaque entier de la séquence représentée dans le tableau TR entre 1
et LR est présent une fois et une seule dans la séquence représentée dans le tableau TS
entre 1 et LS, et ceci dans un ordre quelconque. Pré-condition : les entiers de la séquence
représentée dans TR sont distincts deux a deux)

Exemple :

e sila séquence R est [2, 25, 1], représentée avec ces valeurs dans TR et de longueur
LR = 3, et si la séquence S est [3, 10, 2, 7, 25, 3, 10, 7, 1], représentée avec ces
valeurs dans TS et de longueur LS =9, alors :

TousPrésentUneSeuleFois (TR, LR, TS, LS) = vrai
Car chacun des ¢é1éments de R n’apparait qu’une seule fois dans S.

e sila séquence R est [10, 3, 2], représentée avec ces valeurs dans TR et de longueur
LR = 3, et si la séquence S est [3, 10, 2, 7, 25, 3, 10, 7, 1], représentée avec ces
valeurs dans TS et de longueur LS =9, alors :

TousPrésentUneSeuleFois (TR, LR, TS, LS) = faux
Car 10 et 3 (de R) apparaissent 2 fois dans S.

— Donner une réalisation de la fonction PrésentUneSeuleFois

— Donner une réalisation de la fonction TousPrésentsUneSeuleFois.

décembre 2025 page 1 / 3

UGA - UFR IM?AG — M2 CCI 2025 — 2026 - Algorithmique : AL, devoir surveillé 2

2. Inversion de l'ordre entre deux éléments consécutifs d'une liste chainée

Etant donnés un entier X et une séquence d'entiers S, on veut inverser l'ordre entre le premier
élément de valeur X dans S et son successeur dans S. La séquence S est inchangée si X
n'appartient pas a S, ou si X n'a pas de successeur dans S.

Exemple : si X=20 et S =[10, 20, 30, 40, 20, 50], a I'état final S =[10, 30, 20, 40, 20, 50].
On a échangé¢ la 1€ valeur 20 de S avec son successeur (30).

La séquence S est donnée sous forme d'une liste chainée (représentation standard) :
adCelE : type pointeur de CelE
CelE : type <E : entier ; Suc : adCelE>
T : adCelE {téte de la liste traitée)

Les algorithmes suivants doivent procéder par modification du chainage.

Q2 |8 points]
(i) Le premier élément de la liste a la valeur X

On étudie dans un premier temps le cas ou X est la valeur du premier élément et ou la liste a au
moins deux éléments.
— Dessiner le principe de modification du chainage dans ce cas (état initial : fleches pleines ;
état final : fleches en pointillés) : faire apparaitre deux variables nommées T et D : la valeur de T
est ’adresse du premier ¢lément de la liste, la valeur de D est I’adresse du deuxiéme ¢élément de la
liste.
— Donner Palgorithme qui réalise la modification des liens de chainage entre T et D.

(ii) Le premier élément de valeur X n'est pas en téte et a un successeur

On ¢étudie maintenant le cas ou le premier élément de valeur X se situe ailleurs qu'en téte et a un
successeur.
— Dessiner le principe de modification des liens de chainage dans ce cas : faire apparaitre deux
variables nommées AC et AP : la valeur de AC est 'adresse du premier ¢élément de valeur X et la
valeur de AP est I'adresse du prédécesseur du premier élément de valeur X.
— Donner Palgorithme qui réalise la modification des liens de chainage entre AP et AC.

(iii) Algorithme complet
On traite maintenant I’algorithme complet de notre probléme et on spécifie l'action suivante :
InverserOrdre : action (donnée X : entier, donnée-résultat T : adCelE)
{Inverse, dans la liste de téte T, l'ordre entre le premier élément de valeur X et son
successeur. Si X n'appartient pas a la liste ou si X n'a pas de successeur, la liste est
inchangée. L'algorithme procéde par modification du chainage.}

— Donner une réalisation de l'action InverserOrdre, en incluant tous les cas (dont les 2
premiers étudiés en (i) et (ii)). Dans cette réalisation, on ne recopiera pas les réalisations données
en Q2i et Q2ii, mais on y fera référence par les mentions "Inverser comme en Q2i" ou "Inverser
comme en Q2ii".

3. A propos de listes de listes (listes chainées)

On considere des séquences de séquences d'entiers comme, par exemple, la suivante :
[19,5,8],11,10,-7, 5, 2], [2], [8,5]]

Ces séquences sont représentées par des listes chainées de listes chainées d'entiers :
{cellules pour listes d'entiers}
adCelE : type pointeur de CelE
CelE : type <E : entier, ESuc : adCelE >

décembre 2025 page 2 / 3

UGA - UFR IM?AG — M2 CCI 2025 — 2026 - Algorithmique : AL, devoir surveillé 2

{cellules pour listes de listes d'entiers}
adCelL : type pointeur de CelL
CelL : type <T : adCelE , LSuc : adCelL>

La figure suivante illustre cette représentation :

|l

TLL de type adCelL est 'adresse de téte d'une liste
de listes ; les fleches simples figurent des liens de
type adCelE , et les fleches doubles figurent des
liens de type adCelL.

Cellule de type
CelE

Cellule de type
CelL

[l

31

Q3 [8 points]
(i) Nombre de listes de poids X
Le poids d'une liste d'entiers est la somme de ses ¢léments. On spécifie les fonctions suivantes :
Poids : fonction (T : adCelE) — entier > 0
{Poids de la liste donnée par son adresse de téte T. Le poids de la liste vide est (.}

NbDePoids : fonction (X : entier, TLL : adCelL) — entier > 0
{Nombre de listes de poids X dans la liste de listes donnée par son adresse de téte TLL.}

Exemple : si la liste de téte TLL représente [[9, -5, 8], [, [0, -7, 5, 2], [2], [8, 5]] alors :
NbDePoids (13, TLL) = 1 car la dernicre sous-liste est de poids 13.
NbDePoids (0, TLL) = 2 car la 2e et la 3e sous-liste sont de poids O.
NbDePoids (-1, TTL) = 0 car aucune des sous-listes n’est de poids -1.

— Donner une réalisation de la fonction Poids.
— Donner une réalisation de la fonction NbDePoids en utilisant la fonction Poids.

(ii) Mise a plat d'une liste de listes d'entiers
La mise a plat d'une séquence SS de séquences d'entiers est une séquence S d'entiers formée par
la concaténation des séquences d'entiers de la séquence SS donnée.

Exemple : la mise a plat de la séquence [[9, 5, 8], [, [0, -7, 5, 2], [2], [8,5]]
est la séquence [9, 5, 8,0, -7, 5, 2,2, 8, 5].

On ¢étudie une action de mise a plat par modification des liens de chainage :
MettreAplat : action (donnée-résultat TLL : adCelL ; résultat TE : adCelE)
{Construit la mise a plat de la liste de listes d'entiers de téte TLL. L'algorithme procéde
par modification des liens de chainage. A l'état final, TE est l'adresse de téte de la liste
d'entiers construite, TLL vaut Nil , les cellules de type adCelE ont été déplacées de TLL
vers TE et toutes les cellules de type adCelL ont été libérées.)}

— Donner une réalisation de I'action MettreAplat.

décembre 2025 page 3 / 3

UGA - UFR IM?AG — M2 CCI 2025 — 2026 - Algorithmique : AL, devoir surveillé 2 Exemples de solutions

M2 CCI - Algorithmique
Des exemples de solutions décembre 2025

1..A propos de séquences d'entiers

Q1 "Présent une seule fois" 2 points
version 1 : on dénombre les exemplaires de E (schéma de parcours)
PrésentUneSeuleFois(E, T, L) :
NbE : entier sur [1...Lmax] {nombre d'exemplaires de E}
NbE «- 0
pour iallantde l aL:
si E = T;j alors NbE <— NbE + 1
retour : NbE=1 {remarque : on peut arréter l'itération des que NbDE = 2.}

version 2 : on cherche E dans S et si on le trouve, on vérifie qu'il n'apparait plus ensuite
(schéma de recherche)
PrésentUneSeuleFois(E, T, L) :

OK : booléen {pour élaborer le résultat}
i:entier sur [1...Lmax+1]
11
tant que i # 1 + L et puis E # T;
1<1+1

sii=1+ L alors OK <« faux
sinon 1< i+l
tantque i # 1 + L et puis E # T;
1«1+l
OK <~ 1= 1+L
retour : OK

version 3 : E est présent une seule fois < E est présent au moins une fois et E n'est pas présent
deux fois" (schéma de parcours)
PrésentUneSeuleFois(E, T, L) :
Présent au moins une fois, Pas présent deux fois : booléen
Présent au moins une fois <— faux
Pas présent deux fois < vrai
pouriallantde 1 aL:
si E = T; alors
si Présent_au moins_une fois alors Pas_présent deux_fois «<— faux
sinon Présent_au moins_une fois <— vrai
retour : Présent au moins_une_fois et Pas_présent deux fois

"Tous présents une seule fois" 2 points
{On utilise PrésentUneSeuleFois, dans un schéma de parcours, ou dans un schéma de recherche.)
version 1 : parcours
TousPrésentsUneSeuleFois(TR, LR, TS, LS) :

OK : booléen {pour élaborer le résultat}

OK <« vrai

pouriallantde 1 aLR:

OK « OK et PrésentUneSeuleFois(TR;, TS, LS)
retour : OK

décembre 2025 page 1 / 3

UGA - UFR IM?AG — M2 CCI 2025 — 2026 - Algorithmique : AL, devoir surveillé 2 Exemples de solutions

version 2 : recherche
TousPrésentsUneSeuleFois(TR, LR, TS, LS) :

i:entier sur [1...Lmax+1] {pour la recherche}
1«1
tant que i # 1 + LR et puis PrésentUneSeuleFois(TR;, TS, LS) :

1«1+l

retour : 1= 1+LR

2. Inversion de l'ordre entre deux éléments consécutifs d'une liste chainée

Q2
(i) Le premier élément de la liste a la valeur X et a un successeur 2 points
]T ------------------------ I)
X | e+—> oS>0 o o o
v

o
.
S
.
o
.

.
.
.
.
.
.
e
.
.
.
ann®

T #Nil et puis (TT.E = X et TT.Suc #Nil)}
D : adCelE {adresse du deuxieme)
D « TT.Suc
TT.Suc « DT.Suc
DT.Suc« T
T« D

(ii) Le premier élément de valeur X n'est pas en téte et a un successeur 2 points

T IE_ AP (e . AC IO
VL I O R

o—> o o 06— e—» X | o+—> ’b——:oo
AP;AC:adCelE
APT.Suc « ACT.Suc
AP « ACT.Suc
ACT.Suc « APT.Suc
APT.Suc « AC
(iii) Algorithme complet 4 points
InverserOrdre(X, L)
AP, AC : adCelE {pour la recherche : élément courant et son prédécesseur}
{recherche du premier élément de valeur X, s'il existe, en maintenant le prédécesseur}
AP <« Nil
AC«T
tant que AC # Nil et puis ACT.E = X
AP « AC
AC « ACT.Suc
si AC # Nil alors {X appartient a la liste}
si ACT.Suc # Nil alors {X a un successeur}
si AP = Nil alors Inverser comme en Q2i {X est en téte}
sinon Inverser comme en Q2ii {X n'est pas en téte}

décembre 2025 page 2 / 3

UGA - UFR IM?AG — M2 CCI 2025 — 2026 - Algorithmique : AL, devoir surveillé 2 Exemples de solutions

3. A propos de listes de listes

Q3
(i) Nombre de listes de poids X 2 points Poids, 2 points NbDePoids
Poids (T) :
ACE : adCelE {pour le parcours de la liste d'entiers courante}
PC : entier > 0 {poids courant}
ACE «T
PC«0
tant que ACE = Nil
PC < PC + ACET.E
ACE « ACET.ESuc
retour : PC

NbDePoids(X, TLL) :
{Dans un parcours de la liste de listes, on compte le nombre de listes non vides de poids X
(NbL). Le poids d'une liste est calculé par un simple parcours.}
NbL : entier > 0 {nombre courant de listes de poids X}
ACL : adCelL {pour le parcours de la liste de listes}
ACL « TLL
NbL « 0
tant que ACL # Nil
si Poids(ACLT.T)=X alors
NbL «— NbL+1
ACL « ACLT.LSuc
retour : NbL

(ii) Mise a plat d'une liste de listes d'entiers 4 points

Le résultat est la concaténation des listes d'entiers non vides de la liste de listes donnée. Dans un
parcours de cette liste de listes, le premier élément de la liste courante est connecté en queue du
résultat partiel (adresse Q) et on met a jour cette adresse de queue (recherche du dernier de la liste
courante). Les cellules de type adCelL sont libérées au fur et & mesure de ce parcours.

Pour ne pas traiter la premiere liste & part on munit temporairement le résultat d'un fictif de téte.

MettreAplat (TLL, TE) :

F, Q : adCelE {adresse du fictif de téte et adresse de queue du résultat.}
ACL : adCelL {pour la libération des cellules de type adCelL.}
Allouer(F) {créer liste vide TE (avec fictif et queue)}
Q«F
tant que TLL = Nil
si TLLT.T = Nil alors {concaténation de la liste courante au résultat partiel}
QM. ESuc « TLLT.T {connexion en queue de TE}
Q« TLLT.T {mise a jour de la queue de TE}
tant que QT.ESuc # Nil : { par recherche de la queue de la sous-liste}
Q « QT.ESuc
ACL « TLL {suppression en téte de TLL}
TLL <~ ACLT.LSuc
Libérer(ACL)
QT.ESuc « Nil
TE <« FT.ESuc {suppression du fictif et création de TE}
Libérer(F)

décembre 2025 page 3 / 3

