
UGA - UFR IM2AG – M2 CCI 2025 – 2026 - Algorithmique : AL, devoir surveillé 2 

décembre 2025 page 1 / 3 

 

M2 CCI – Algorithmique – Devoir surveillé 2 
 
 
 
 

Durée 2h, sans documents 4 décembre 2025 
 
 
NE PAS RECOPIER les énoncés des questions. Ne pas perdre de temps à un soin excessif de 
la présentation. Les questions sont indépendantes. Le barème est indicatif. 
 

1. À propos de séquences d'entiers (représentation contiguë de séquences) 
On traite des séquences d'entiers représentées sous forme contiguë avec longueur explicite : 

Lmax : constante de type entier > 0  {longueur maximum des séquences considérées} 
 
Q1  [4 points]  

On spécifie les deux fonctions suivantes : 
PrésentUneSeuleFois : fonction (E : entier, T : tableau sur [1…Lmax] d'entier, 
                          L : entier sur [0…Lmax]) ® booléen 

{vrai si et seulement si l'entier E est présent une fois et une seule dans la séquence 
représentée dans le tableau T entre 1 et L.} 
 

Exemple : si la séquence est [3, 10, 2, 7, 25, 3, 10, 7, 1], représentée avec ces valeurs dans T 
et de longueur L = 9, alors : 
PrésentUneSeuleFois (2, T, L) = vrai car 2 n’apparaît qu’une seule fois 
PrésentUneSeuleFois (10, T, L) = faux car 10 apparaît 2 fois 
 
TousPrésentsUneSeuleFois : fonction (TR : tableau sur [1…Lmax] d'entier, 
                  LR : entier sur [0…Lmax], 
                  TS : tableau sur [1…Lmax] d'entier, 
                  LS : entier sur [0…Lmax]) ® booléen 

{vrai si et seulement chaque entier de la séquence représentée dans le tableau TR entre 1 
et LR est présent une fois et une seule dans la séquence représentée dans le tableau TS 
entre 1 et LS, et ceci dans un ordre quelconque. Pré-condition : les entiers de la séquence 
représentée dans TR sont distincts deux à deux} 
 

 Exemple :  
• si la séquence R est [2, 25, 1], représentée avec ces valeurs dans TR et de longueur 

LR = 3, et si la séquence S est [3, 10, 2, 7, 25, 3, 10, 7, 1], représentée avec ces 
valeurs dans TS et de longueur LS = 9, alors : 

TousPrésentUneSeuleFois (TR, LR, TS, LS) = vrai 
Car chacun des éléments de R n’apparaît qu’une seule fois dans S. 

• si la séquence R est [10, 3, 2], représentée avec ces valeurs dans TR et de longueur 
LR = 3, et si la séquence S est [3, 10, 2, 7, 25, 3, 10, 7, 1], représentée avec ces 
valeurs dans TS et de longueur LS = 9, alors : 

TousPrésentUneSeuleFois (TR, LR, TS, LS) = faux 
Car 10 et 3 (de R) apparaissent 2 fois dans S. 

 
— Donner une réalisation de la fonction PrésentUneSeuleFois  
 
— Donner une réalisation de la fonction TousPrésentsUneSeuleFois.  



UGA - UFR IM2AG – M2 CCI 2025 – 2026 - Algorithmique : AL, devoir surveillé 2 

décembre 2025 page 2 / 3 

2. Inversion de l'ordre entre deux éléments consécutifs d'une liste chaînée 
Étant donnés un entier X et une séquence d'entiers S, on veut inverser l'ordre entre le premier 

élément de valeur X dans S et son successeur dans S. La séquence S est inchangée si X 
n'appartient pas à S, ou si X n'a pas de successeur dans S. 

 
Exemple : si X=20 et S = [10, 20, 30, 40, 20, 50], à l'état final S = [10, 30, 20, 40, 20, 50]. 
On a échangé la 1e valeur 20 de S avec son successeur (30). 
 
La séquence S est donnée sous forme d'une liste chaînée (représentation standard) : 

adCelE : type pointeur de CelE 
CelE : type <E : entier ; Suc : adCelE> 
T : adCelE          {tête de la liste traitée} 
 

Les algorithmes suivants doivent procéder par modification du chaînage. 
 

Q2 [8 points] 
(i) Le premier élément de la liste a la valeur X  

On étudie dans un premier temps le cas où X est la valeur du premier élément et où la liste a au 
moins deux éléments. 
— Dessiner le principe de modification du chaînage dans ce cas (état initial : flèches pleines ; 
état final : flèches en pointillés) : faire apparaitre deux variables nommées T et D : la valeur de T 
est l’adresse du premier élément de la liste, la valeur de D est l’adresse du deuxième élément de la 
liste. 
— Donner l’algorithme qui réalise la modification des liens de chainage entre T et D. 
 
(ii)  Le premier élément de valeur X n'est pas en tête et a un successeur 

On étudie maintenant le cas où le premier élément de valeur X se situe ailleurs qu'en tête et a un 
successeur. 
— Dessiner le principe de modification des liens de chaînage dans ce cas : faire apparaître deux 
variables nommées AC et AP : la valeur de AC est l'adresse du premier élément de valeur X et la 
valeur de AP est l'adresse du prédécesseur du premier élément de valeur X. 
— Donner l’algorithme qui réalise la modification des liens de chainage entre AP et AC. 
 
(iii)  Algorithme complet 

On traite maintenant l’algorithme complet de notre problème et on spécifie l'action suivante : 
InverserOrdre : action (donnée X : entier, donnée-résultat T : adCelE) 

{Inverse, dans la liste de tête T, l'ordre entre le premier élément de valeur X et son 
successeur. Si X n'appartient pas à la liste ou si X n'a pas de successeur, la liste est 
inchangée. L'algorithme procède par modification du chaînage.} 
 

— Donner une réalisation de l'action InverserOrdre, en incluant tous les cas (dont les 2 
premiers étudiés en (i) et (ii)). Dans cette réalisation, on ne recopiera pas les réalisations données 
en Q2i et Q2ii, mais on y fera référence par les mentions "Inverser comme en Q2i" ou "Inverser 
comme en Q2ii". 
 

3. À propos de listes de listes (listes chaînées) 
On considère des séquences de séquences d'entiers comme, par exemple, la suivante : 

[ [9, 5, 8], [], [0, -7, 5, 2], [2], [8,5] ] 
 

Ces séquences sont représentées par des listes chaînées de listes chaînées d'entiers : 
{cellules pour listes d'entiers} 

adCelE : type pointeur de CelE 
CelE : type <E : entier, ESuc : adCelE > 



UGA - UFR IM2AG – M2 CCI 2025 – 2026 - Algorithmique : AL, devoir surveillé 2 

décembre 2025 page 3 / 3 

 
{cellules pour listes de listes d'entiers} 

adCelL : type pointeur de CelL 
CelL : type <T : adCelE , LSuc : adCelL> 
 

La figure suivante illustre cette représentation :  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Q3 [8 points] 
(i) Nombre de listes de poids X 

Le poids d'une liste d'entiers est la somme de ses éléments. On spécifie les fonctions suivantes : 
Poids : fonction (T : adCelE) ® entier ³ 0 

{Poids de la liste donnée par son adresse de tête T. Le poids de la liste vide est 0.} 
 

NbDePoids : fonction (X : entier, TLL : adCelL) ® entier ³ 0 
{Nombre de listes de poids X dans la liste de listes donnée par son adresse de tête TLL.} 
 

Exemple : si la liste de tête TLL représente [ [9, -5, 8], [], [0, -7, 5, 2], [2], [8, 5] ] alors : 
NbDePoids (13, TLL) = 1 car la dernière sous-liste est de poids 13. 
NbDePoids (0, TLL) = 2 car la 2e et la 3e sous-liste sont de poids 0. 
NbDePoids (-1, TTL) = 0 car aucune des sous-listes n’est de poids -1. 
 

— Donner une réalisation de la fonction Poids. 
— Donner une réalisation de la fonction NbDePoids en utilisant la fonction Poids. 
 
(ii) Mise à plat d'une liste de listes d'entiers 

La mise à plat d'une séquence SS de séquences d'entiers est une séquence S d'entiers formée par 
la concaténation des séquences d'entiers de la séquence SS donnée. 

 
Exemple : la mise à plat de la séquence [ [9, 5, 8], [], [0, -7, 5, 2], [2], [8,5] ] 
est la séquence [9, 5, 8, 0, -7, 5, 2, 2, 8, 5]. 
 
On étudie une action de mise à plat par modification des liens de chaînage : 

MettreAplat : action (donnée-résultat TLL : adCelL ; résultat TE : adCelE ) 
{Construit la mise à plat de la liste de listes d'entiers de tête TLL. L'algorithme procède 
par modification des liens de chaînage. À l'état final, TE est l'adresse de tête de la liste 
d'entiers construite, TLL vaut Nil , les cellules de type adCelE ont été déplacées de TLL 
vers TE et toutes les cellules de type adCelL ont été libérées.} 
 

— Donner une réalisation de l'action MettreAplat. 

• 
• 
• 

• • • • • 

• 
• 
• 

• • • • • 

Cellule de type 
CelE 

Cellule de type 
CelL 

TLL 

TLL de type adCelL est l'adresse de tête d'une liste 
de listes ; les flèches simples figurent des liens de 
type adCelE , et les flèches doubles figurent des 
liens de type adCelL. 



UGA - UFR IM2AG – M2 CCI 2025 – 2026 - Algorithmique : AL, devoir surveillé 2 Exemples de solutions 

décembre 2025 page 1 / 3 

M2 CCI - Algorithmique 
Des exemples de solutions décembre 2025 
 

1. . À propos de séquences d'entiers 
Q1 "Présent une seule fois"   2 points 
version 1 : on dénombre les exemplaires de E (schéma de parcours) 

PrésentUneSeuleFois(E, T, L) : 
  NbE : entier sur [1…Lmax]  {nombre d'exemplaires de E} 
  NbE ¬ 0 
  pour  i allant de 1 a L :  
   si E = Ti alors NbE ¬ NbE + 1 
 retour : NbE=1        {remarque : on peut arrêter l'itération dès que NbE = 2.} 
 

version 2 : on cherche E dans S et si on le trouve, on vérifie qu'il n'apparaît plus ensuite 
(schéma de recherche) 

PrésentUneSeuleFois(E, T, L) : 
  OK : booléen       {pour élaborer le résultat} 
  i : entier sur [1…Lmax+1] 
  i ¬ 1 
  tant que i ≠ 1 + L et puis E ≠ Ti 
   i ¬ i + 1 
  si i = 1 + L alors OK ¬ faux 
  sinon  i ¬ i+1 
     tant que i ≠ 1 + L et puis E ≠ Ti 
      i ¬ i + 1 
     OK ¬ i = 1+L 
 retour : OK 
 

version 3 : E est présent une seule fois Û E est présent au moins une fois et E n'est pas présent 
deux fois" (schéma de parcours) 

PrésentUneSeuleFois(E, T, L) : 
  Présent_au_moins_une_fois, Pas_présent_deux _fois : booléen 
  Présent_au_moins_une_fois ¬ faux 
  Pas_présent_deux _fois ¬ vrai 
  pour i allant de 1 a L : 
    si E = Ti alors 
     si Présent_au_moins_une_fois alors Pas_présent_deux_fois ¬ faux 
     sinon Présent_au_moins_une_fois ¬ vrai 
 retour : Présent_au_moins_une_fois et Pas_présent_deux_fois 
 

"Tous présents une seule fois"       2 points 
{On utilise PrésentUneSeuleFois, dans un schéma de parcours, ou dans un schéma de recherche.} 
version 1 : parcours 

TousPrésentsUneSeuleFois(TR, LR, TS, LS) : 
  OK : booléen       {pour élaborer le résultat} 
  OK ¬ vrai 
  pour i allant de 1 a LR :  
   OK ¬ OK et PrésentUneSeuleFois(TRi, TS, LS) 
 retour : OK 
 
 
 



UGA - UFR IM2AG – M2 CCI 2025 – 2026 - Algorithmique : AL, devoir surveillé 2 Exemples de solutions 

décembre 2025 page 2 / 3 

version 2 : recherche 
TousPrésentsUneSeuleFois(TR, LR, TS, LS) : 
  i : entier sur [1…Lmax+1]   {pour la recherche} 
  i ¬ 1 
  tant que i ≠ 1 + LR et puis PrésentUneSeuleFois(TRi, TS, LS) :  
   i ¬ i+1 
 retour : i = 1+LR 
 

2.  Inversion de l'ordre entre deux éléments consécutifs d'une liste chaînée 
Q2  
(i)  Le premier élément de la liste a la valeur X et a un successeur    2 points 
 
 
 
 
 
{pré-condition pour une liste d'au moins deux éléments dont le premier vaut X : 

T ¹ Nil et puis ( T­.E = X et T­.Suc ¹Nil)} 
D : adCelE           {adresse du deuxième} 
D ¬ T­.Suc 
T­.Suc ¬ D­.Suc 
D­.Suc ¬ T 
T ¬ D 
 

(ii)  Le premier élément de valeur X n'est pas en tête et a un successeur    2 points 
 
 
 
 
 

AP ; AC : adCelE 
 
AP­.Suc ¬ AC­.Suc 
AP ¬ AC­.Suc 
AC­.Suc ¬ AP­.Suc 
AP­.Suc ¬ AC 
 

(iii) Algorithme complet         4 points 
InverserOrdre(X, L) 
  AP, AC : adCelE     {pour la recherche : élément courant et son prédécesseur} 

{recherche du premier élément de valeur X, s'il existe, en maintenant le prédécesseur} 
  AP ¬ Nil 
  AC ¬ T 
  tant que AC ¹ Nil et puis AC­.E ¹ X 
    AP ¬ AC 
    AC ¬ AC­.Suc 
  si AC ¹ Nil alors      {X appartient à la liste} 
    si AC­.Suc ¹ Nil alors {X a un successeur} 
      si AP = Nil alors Inverser comme en Q2i {X est en tête} 
      sinon Inverser comme en Q2ii {X n'est pas en tête} 
 
 

   

T 

    X 

AP AC 

   X 
T D 



UGA - UFR IM2AG – M2 CCI 2025 – 2026 - Algorithmique : AL, devoir surveillé 2 Exemples de solutions 

décembre 2025 page 3 / 3 

3. À propos de listes de listes 
Q3  
(i) Nombre de listes de poids X      2 points Poids, 2 points NbDePoids 

Poids (T) : 
 ACE : adCelE        {pour le parcours de la liste d'entiers courante} 
 PC : entier ³ 0        {poids courant} 
 ACE ¬T 
 PC ¬ 0 
 tant que ACE ¹ Nil 
  PC ¬ PC + ACE­.E 
  ACE ¬ ACE­.ESuc 
retour : PC 

 
NbDePoids(X, TLL) :  
{Dans un parcours de la liste de listes, on compte le nombre de listes non vides de poids X 
(NbL). Le poids d'une liste est calculé par un simple parcours.} 
 NbL : entier ³ 0       {nombre courant de listes de poids X} 
 ACL : adCelL        {pour le parcours de la liste de listes} 
 ACL ¬ TLL 
 NbL ¬ 0 
 tant que ACL ≠ Nil 
  si Poids(ACL­.T)=X alors  
   NbL ¬ NbL+1 
  ACL ¬ ACL­.LSuc 
retour : NbL 
 

(ii) Mise à plat d'une liste de listes d'entiers     4 points 
Le résultat est la concaténation des listes d'entiers non vides de la liste de listes donnée. Dans un 

parcours de cette liste de listes, le premier élément de la liste courante est connecté en queue du 
résultat partiel (adresse Q) et on met à jour cette adresse de queue (recherche du dernier de la liste 
courante). Les cellules de type adCelL sont libérées au fur et à mesure de ce parcours. 

Pour ne pas traiter la première liste à part on munit temporairement le résultat d'un fictif de tête. 
 

MettreAplat (TLL, TE) : 
 F, Q : adCelE         {adresse du fictif de tête et adresse de queue du résultat.} 
 ACL : adCelL        {pour la libération des cellules de type adCelL.} 
 
 Allouer(F)          {créer liste vide TE (avec fictif et queue)} 
 Q ¬ F 
 tant que TLL ¹ Nil  

si TLL­.T ¹ Nil alors  {concaténation de la liste courante au résultat partiel} 
   Q­.ESuc ¬ TLL­.T   {connexion en queue de TE} 
   Q ¬ TLL­.T      {mise à jour de la queue de TE} 
   tant que Q­.ESuc ¹ Nil :   { par recherche de la queue de la sous-liste} 
    Q ¬ Q­.ESuc    
  ACL ¬ TLL       {suppression en tête de TLL} 
  TLL ¬ ACL­.LSuc 
  Libérer(ACL)  
 Q­.ESuc ¬ Nil 
 TE ¬ F­.ESuc       {suppression du fictif et création de TE} 
 Libérer(F) 


