UNIVERSITE .
¢ Grenoble &zua/-
2 Alpes

Programming Language Semantics and Compiler Design
(Sémantique des Langages de Programmation et Compilation)

Notations and main results in While, Block, Proc,
and the various semantics

Ylies Falcone
ylies.falcone@univ-grenoble-alpes.fr — www.ylies.fr

Univ. Grenoble Alpes, and LIG-Inria team CORSE

Master of Sciences in Informatics at Grenoble (MoSIG)
Master 1 info

Univ. Grenoble Alpes - UFR IMAG
www.univ-grenoble-alpes.fr — im2ag.univ-grenoble-alpes.fr

Academic Year 2020 - 2021

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC

About

This document recalls some of the main notations, definitions, and results
related to While, Block, Proc.

More specifically it recalls:
> the syntax,
> the static semantic analysis (& typing),
> the operational semantics (natural and structural), and

> the axiomatic semantics.

Disclaimer
The document is not exhaustive; the reference documents remain the lecture
slides.

Viies Falcone (ylies. falconeuniv-grenoble-alpes.fr)

Notations and main results in While, Block, Proc,, and the various semanticg

1] 4¢

lUniv. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC

Outline - Notations and main results in While, Block, Proc,
and the various semantics

Notations and main results in While, Block, Proc,, and the various semantics|

Syntax

Semantic Analysis (typing)

Natural Operational Semantics (NOS)
Structural Operational Semantics

Axiomatic Semantics

Yiiés Falcone (ylies. falconeGuniv-grenoble-alpes.fr) 2| ag)

Univ. Grenoble Alpes, UFR IM?AG, MoSIG 1 PLCD - Master 1 info SLPC

Outline - Notations and main results in While, Block, Proc,
and the various semantics

Syntax
Syntax of Expressions Used in Semantic Analysis
Syntax of While
Syntax of Block
Syntax of Proc

Viies Falcone (ylies. falconeuniv-grenoble-alpes.fr)

Notations and main results in While, Block, Proc,, and the various semantics{

3|46

|Univ. Grenoble Alpes, UFR IM?AG, MoSIG 1 PLCD - Master 1 info SLPC Notations and main results in While, Block, Proc,, and the various semantics|

Syntax of Expressions Used used in Semantic Analysis

There is one sort of expressions because types are not yet known.

Expressions are defined by an abstract grammar
There is only one sort of expressions.

e == true|false|n|x|eopae]eoprele|eopbe

where true and false are the boolean constants, n denotes a natural number,
and x denotes a variable, and binary operators: arithmetic (opa), boolean
(opb) and relational (oprel).

Yligs Falcone (ylies.falconeGuniv-grenoble-alpes.fr) 4|4

Univ. Grenoble Alpes, UFR IM?AG, MoSIG 1 PLCD - Master 1 info SLPC

Syntax of Expressions Used used in Semantic Analysis

> Numbers: n € Num = {0,...,9}"
> Variables: x € Var
> Arithmetic expressions:

a € Aexp
©= n|x|at+alaxala—a

» Boolean expressions:

b €
b =

Bexp
true |false |[a=ala<a|-b|bAb

Num, Var, Aexp, and Bexp are syntactic categories.

Remark Other operators for artihmetical expressions can be defined from the
proposed ones. O

Ylizs Falcone (ylies. falconeGuniv-grenoble-alpes.fr)

Notations and main results in While, Block, Proc,, and the various semantic:

549

[Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC

Syntax of While

Notations and main results in While, Block, Proc,, and the various semantics|

Statements in semantic analysis are defined by an abstract grammar

S = x:i=e (assignment of an expression to a variable x)
| skip (doing nothing)
|S;S (sequential composition)
\

if e then S else S fi
| while e do S od

(conditional composition)
(iterative and unbounded composition)

Statements in operational semantics are defined by an abstract grammar

S € Stm
S = x:=a (assignment of an arithmetic expression
a to a variable x)
| skip (doing nothing)
[S;S (sequential composition)
| if bthen S else S fi (conditional composition)
| while e do S od (iterative and unbounded composition)

Stm is a syntactic category

Yiiés Falcone (ylies.fal 6 46)

- gronoble-alpes.fr)

[Univ. Grenoble Alpes, UFR IM?AG, MoSIG 1 PLCD - Master 1 info SLPC

Blocks and variable declarations: syntax

Extending language While to handle variable declarations.

Definition 1 (Language Block)

S €
S =

Stm
x:=a|skip|S;S

| if b then S else S fi
| while b do S od

| begin Dy S end

Definition 2 (Syntactic category Decy)

Dy ::=var x; Dy |var x:=a; Dy | ¢

Yiiés Falcone (ylies . fal - grenoble-alpes. fr)

Notations and main results in While, Block, Proc,, and the various semantic:

7]46

Univ. Grenoble Alpes, UFR IMZAG, MoSIG 1 PLCD - Master 1 info SLPC
Introducing Procedures in the syntax

Notations and main results in While, Block, Proc,, and the various semantics|[Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Notations and main results in While, Block, Proc,, and the various semantics

Outline - Notations and main results in While, Block, Proc,
and the various semantics

Extending Block with procedure declarations.

Definition 3 (Language Proc)

S € Stm
S = x:=a|skip|S; S
|'if b then S; else S, fi
| while b do S od
| begin Dy Dp S end | call p

Definition 4 (Syntactic category Decp)

Dp :=proc pis S; Dp | ¢

Yiiés Falcone (ylies. falconeGuniv-grenoble-alpes.fr) 846||__Yiies Falcone (ylies. falconeGuniv-grenoble-alpes.fr)

9 4

Univ. Grenoble Alpes, UFR IMQAG. MoSIG 1 PLCD - Master 1 info SLPC
About semantic analysis - typing
Ingredients used in the formalization of the type system

Notations and main results in While, Block, Proc,, and the various semantics|[Univ. Grenoble Alpes, UFR IM?AG, MoSIG 1 PLCD - Master 1 info SLPC

Type System for Expressions

Notations and main results in While, Block, Proc,, and the various semantic:

> Environment I': Name 25 Types.

Axioms
> Judgments THt:7. bool. constant int. constant
“In environment T, term t is well-typed and has type 7.”
(free variables of t belong to the domain of I') I+ true : Bool [false: Bool Mn:lint

> Type system

Inference Rules
Inference rules Axioms variables ‘ int opbin bool. opbin relational operators
MeA - Thk A, N-e :Int It e : Bool MN-e :t
T TFA | TRA4 Mx) =t M-e:int I+ e : Bool Me:t
=x:t | e opae:iInt |+ e opbe :Bool | It e oprel e : Bool

A type system is an inference system.

Yiiés Falcone (ylies. falconeGuniv-grenoble-alpes.fr) 10| 46||__Yii2s Falcone (ylies.falconeGuniv-grenoble-alpes.fr)

114
[Univ. Grenoble Alpes, UFR IM2AG. MoSIG 1 PLCD - Master 1 info SLPC

Type system for Statements

Notations and main results in While, Block, Proc,, and the various semantics| [Univ. Grenoble Alpes, UFR IM?AG, MoSIG 1 PLCD - Master 1 info SLPC

Type system for Block

Notations and main results in While, Block, Proc,, and the various semantic:

Judgments

» [+ t:7 means “In environment I', term t is well-typed and has type 7."”
» [S means “statement S is well-typed within environment ™"

Judgments
. » '+ Dy | I means
Axioms AR . - . .
Variable declarations Dy are well typed within variable environment
Assignment Skip ['v. Moreover, variable declarations Dy update variable environment
Ty intoT}".
> [~ S means
FFe:t TEx:t “statement S is well-typed within environment I'”
MlEx:i=e I+ skip
» DV(D,) denotes the set of variables declared in D, .
Inference rules
» Ty ~ 7] denotes the environment I’ such that:
Sequence Iteration Conditional > (x)=T(x)ifx#y
> '(y)=r
=S TS |rt+e:Bool TS |TFe:Bool THS TES
r=5::S I+ while e do S od I if e then Sy else S, fi

Yiiés Falcone (y11

alconeGuniv-grenoble-alpes. fr) 12| 46||__Yliés Falcone (ylies. falcone@univ-grenoble-alpes.fr)

13)44

(Univ. Grenoble Alpes, UFR IMAG, MoSIG 1 PLCD - Master 1 info SLPC

Extending the Type System

Notations and main results in While, Block, Proc,, and the various semantics|[Univ. Grenoble Alpes, UFR IM?AG, MoSIG 1 PLCD - Master 1 info SLPC

Type system for Proc

Notations and main results in While, Block, Proc,, and the various semantic:

Inference rule for Blocks

FEDy (T T FS DP(Dp) denotes the set of procedures declared in Dp.
T+ begin Dy S end

Procedure environment ['p : Name — {proc} (partial)
Inference rules for declarations N
Extending judgments:
> (r\/,rp) F Dp | I'j; means
“Procedure declarations in Dp are well-typed within variable and pro-

Sequential evaluation

lFe:t Tx—t]FDy|T

TFell TFvarx—e; Dy Ty cedure environments (.F\/, Ip). Mor‘eover,l p:ocedure declarations in Dp
update procedure environment I'p into 'p.
Collateral evaluation > (Fv,Tp) - S means
“Statement S is well-typed within variable and procedure environments
lFe:t THEDy|T

(Tv,Tp).

M-e|l MEvar x:=e Dy | l[x—t]

Yiigs Falcone (y15.

£alconsOuniv- grenoble-alpes. fr)

14 46||__Ylies Falcone (ylies. falcone@univ-grenoble-alpes.£r)

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Notations and main results in While, Block, Proc,, and the various semantics|

Static Binding for Procedures and Variables

TviEDv Ty (Ty,TR)FDp|Th (T, TH)FS
Block (Tv,Tp) - begin Dy Dp S end
Empty P
proc. decl. (Tv,Fe) el Tp
Non-empty (Tv,Tp)FS (Tv,Te[p > proc]) - Dp | T p & DP(Dp)
- i /
proc. decl. (Tv,Tp)Fproc pis S; Dp | Th
_Te(p) = proc
Call (T'v,lp)F call p

Remark The procedure environment is a partial function in Name — {proc}.
0

Remark The same considerations (as those made for variable declarations)
apply concerning the possibility of redeclarations and the priority between
declarations. O

Yiiés Falcone (ylies. falconeGuniv-grenoble-alpes.fr) 16 46)

[Univ. Grenoble Alpes, UFR |M2AG‘ MoSIG 1 PLCD - Master 1 info SLPC
Dynamic Binding for Procedures and Variables

FvEDy| H/ (I"V, ;9) =S udef(Dp)
Block (Tv,Tp) - begin Dy Dp S end
(Tv,Tp) S
P2 =S
Call (Fy.tr)r callp 7P

» where ', = upd(lp, Dp)

> with:
upd(Fp,proc pis S ; Dp) = upd(le[p+— S], Dp)
upd(Fp,e) = Tp
udef(proc pis S; Dp)) = wudef(Dp)Ap & DP(Dp)
udef(e) = true

Remark The procedure environment is a partial function in Name — Stm. [

Yliés Falcone (ylies. falconeQuniv-grenoble-alpes.fr)

Notations and main results in While, Block, Proc,, and the various semanticg

17 4

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Notations and main results in While, Block, Proc,, and the various semantics|

Outline - Notations and main results in While, Block, Proc,
and the various semantics

Natural Operational Semantics (NOS)
NOS of Expressions
NOS of While
NOS of Block
NOS of Proc

Yiiés Falcone (ylies. falconeGuniv-grenoble-alpes.fr) 18 46)

Univ. Grenoble Alpes, UFR IM?AG, MoSIG 1 PLCD - Master 1 info SLPC

Semantic domains and substitution

> Integers: Z
> Booleans: B = {tt, ff}
> States: State = Var — 7Z

Definition 5 (Substituing a value to a variable)
Let v € Z. Then, o[y — v] denotes the state o’ such that:

o(x) ifxty.

for all x € Var,o'(x) = { v otherwise

Yliés Falcone (ylies. falconeQuniv-grenoble-alpes. fr)

Notations and main results in While, Block, Proc,, and the various semanticg

1949

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC

Outline - Notations and main results in While, Block, Proc,
and the various semantics

Notations and main results in While, Block, Proc,, and the various semantics|

Natural Operational Semantics (NOS)
NOS of Expressions

Yliés Falcone (ylies. falconeGuniv-grenoble-alpes.fr) 20 46

[Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC

Semantic functions for arithmetic and boolean expressions

» Numerals: integers

Num — N

N _
N(m---n) = Tin x 10

» Boolean expressions: for each
» Arithmetic expressions: for each state, a value in B

state, a value in Z
A : Aexp — (State — Z)

Alnlo = N(n)

Alx]o = o(x)
Ala1 + az]o = Alai]o +/ Alaz]o
Alay * az]o = Alai]o *; Alaz]o
.A[al - 32](7 = A[al]a - _A[az]a

B : Bexp — (State — B)

Bltrue]o = tt
Blfalse]o = ff
B[-blo = —-B[blo
Bla1 = a]o = Alai]o = Alax]o
Bla1 < az]o = Alai]o <; Alaz]o
B[b1 A b2]o = B[bi]o A B[b2]o

Yiizs Falcone (ylies. falconeGuniv-grenoble-alpes.fr)

Notations and main results in While, Block, Proc,, and the various semantic:

21)44

Univ. Grenoble Alpes, UFR IM2AG4 MoSIG 1 PLCD - Master 1 info SLPC
Outline - Notations and main results in While, Block, Proc,

and the various semantics

Notations and main results in While, Block, Proc,, and the various semantics|

Natural Operational Semantics (NOS)

NOS of While

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC
Semantic and transition system for statements

part,

> Statements: Sys : Stm — (State — State)

o if (S,0) = o,
undef otherwise,

Sns[S]o = {

Relation — is defined in terms of a transition system.

Transition system for Natural Operational Semantics

> Configurations: (Stm x State) U State.

» Final configurations (a subset of the set of configurations): State.
(Configurations in Stm x State are called non-final.)

> Transition relation: —C (Stm x State) x State
We note (S,0) — o', when the program moves from configuration (S, o)
to the terminal configuration o’.
» “The execution of S from o terminates in state o’"
» Goal: to describe how the result of a program execution is obtained.

Yiiés Falcone (ylies.fal v-grenoble-alpes. fr)

Yiiés Falcone (ylies.fal v-grenoble-alpes.fr)

Notations and main results in While, Block, Proc,, and the various semantic:

Univ. Grenoble Alpes, UFR IMZAG, MoSIG 1 PLCD - Master 1 info SLPC
Axioms and rules defining the transition relation

Axioms
Rule for Sequential Statements

(x:=a,0) — o[x — Ala]o]
(51,0) 20’ (S2,0') ="
(51; 82,0) = o

(skip,0) = o
Rules for Conditional Statements

(S1,0) = o’
(if b then S; else S fi, o) — o’

ifB[blo = tt

(S2,0) =0’
(if b then Sy else S fi,0) — o’

if B[blo = ff

Rules for Iterative Statements (unbounded iteration)

(S,0) — o’ (while bdo S od,c’) = o”
(while b do S od, o) — 0"

ifB[blo = tt

— ifBlblo=ff
(Whie bdo S od,0) 5 o TBIble

Yiiés Falcone (ylies. falconeGuniv-grenoble-alpes.fr)

Notations and main results in While, Block, Proc,, and the various semantics|

24 a6

[Univ. Grenoble Alpes, UFR |M2AG‘ MoSIG 1 PLCD - Master 1 info SLPC
Outline - Notations and main results in While, Block, Proc,
and the various semantics

Natural Operational Semantics (NOS)

NOS of Block

Yliés Falcone (ylies. falconeQuniv-grenoble-alpes.fr)

Notations and main results in While, Block, Proc,, and the various semanticg

25 | 4

Univ. Grenoble Alpes, UFR IMZAG, MoSIG 1 PLCD - Master 1 info SLPC
Preliminaries: stacks - definition
We use a stack structure to manage local declarations.
Let F be a set of (partial) functions with the same signature.
Elements of F are denoted by f (which can be subscripted and primed).

We note [] the empty partial function (defined nowhere, i.e., Dom([]) = 0)

Stack notation over partial functions

» The set of stacks over F is denoted by F~.
» Elements of F* are noted f,f, f, ...

Definition 6 (Stack)
Stacks are defined inductively:
» The empty stack is denoted by 0.

» Given a stack f and a pgrtial function f, f & f denotes the stack
composed of the stack f on top of which is partial function f.

Yiiés Falcone (ylies. falconeGuniv-grenoble-alpes.fr)

Notations and main results in While, Block, Proc,, and the various semantics|

26 46)

Univ. Grenoble Alpes, UFR IM?AG, MoSIG 1 PLCD - Master 1 info SLPC

Preliminaries: evaluation on stacks and substitution on partial functions

Definition 7 (Evaluation on stacks)

Evaluation of a value x in the domain of the partial functions is defined
inductively on stacks:

» For a non empty stack 7269 f:

f'(x)

F(x)
(f @ f is the stack resulting in pushing function f’ to stack £.)

> For the empty stack: ()(x) = undef.

if x € Dom(f"),
otherwise.

(7o)6 = {

Definition 8 (Substitution on partial functions)

Given some (partial) function f : E — F, y € E, and v € F, f[y > v] is the
partial function defined as:

v ifx=y,
f(x) otherwise.

fly = vi(x) = {

Yliés Falcone (ylies. falconeQuniv-grenoble-alpes. fr)

Notations and main results in While, Block, Proc,, and the various semanticg

2746

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC

Refining the notion of state

States are replaced by a symbol table plus a memory

Definition 9 (Symbol table: variable environment)

art.
Envy = Var P Loc

p denotes an element of Envy.
Thus, p € Envy™ denotes a stack of tables.

Definition 10 (Memory)

Store = Loc 5" 7

o denotes an element of Store.

Notation: new() is a function that returns a fresh memory location.

Yiiés Falcone (ylies. falconeGuniv-grenoble-alpes.fr)

Notations and main results in While, Block, Proc,, and the various semantics|

28 | 46|

[Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC

Revisiting the semantic functions for arithmetic and Boolean expressions

Definition 11 (Semantic function for arithmetic expressions)

A : Aexp — ((Envy ™ x Store) — Z)
Alnl(p,) = N]n|
AlX](p,0) =0o(p(x))
Alar + 22)(5,) = Alan] (5. 0) +1 Alae] (5, 7)
Alar = 2](p,) = Alar](p, o) 1 Ala2] (5, o)
Alar — 2](p, 0) = Ala1](p, o) —1 Alaz](p, o)

Definition 12 (Semantic function for boolean expressions)

*

B : Bexp — ((Envy™ x Store) — B)

Same principle.

Yiizs Falcone (ylies. falconeGuniv-grenoble-alpes.fr)

Notations and main results in While, Block, Proc,, and the various semantic:

2949

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC
Revisiting the semantic of statements

Definition 13 (Transition system for While)
Configurations: (Stm x Envy* x Store) U Store
Final configurations: Store

Transitions: (Stm x Envy ™ x Store) U Store

» Assignment: » Skip:

(x = 2.5.0) = a[p(x) = A7)] (skip.p.0) o

» While:
> if Bbl(5,0) =
» Sequential composition:

(while b do S od,p,0) = o ,
(S1,p,0) = o

Notations and main results in While, Block, Proc,, and the various semantics|

(S2,p,0") ="

> if B[b](p,0) = tt
(5,p,0) = o’ (while bdo S od, p,0’) — o'
(while b do S od, p,0) = ¢

(51 %2,p,0) > o

> If:
> if Blb)(p, o) = fF
(S1,p,0) = o’
(if b then S; else S, fi, p,0) — o’

> if B[b](p,0) = tt
(52,p,0) = o’
(if b then S; else S5 fi, p,0) — o’

Yiiés Falcone (ylies.fal v-grenoble-alpes. fr)

"

[Univ. Grenoble Alpes, UFR IMQAG, MoSIG 1 PLCD - Master 1 info SLPC
Transition rules for blocks

Definition 14 (Transition system for variable declarations)
» Configurations: (Decy x Envy™ x Envy x Store) U (Envy x Store) i.e.,
of the form (D, p, p’,) or (p',), where:
» Dy: sequence of declarations > p’: local symbol table
> p: global symbol table > o: memory
> Final configurations: Envy x Store (i.e., of the form (o', 0))

» Transitions:
—p C (Decy x Envy™ x Envy x Store) x (Envy x Store)

i.e., of the form (D, p,p’, o) —p (0", 0"

(e.,0',0) =b (¢, 0)

(Dv, p, plx = N,0) —=p (p',0")

/

(var x; Dv,p,p,0) —=p (p',0")

(Dv, p, plx = 1], oll = Alal(p & p,0)]) —b (¢, 0")
(var x:=a; Dv,p,p,0) —p (p',0")

Yiiés Falcone (ylies.fal v-grenoble-alpes. fr)

Notations and main results in While, Block, Proc,, and the various semantic:

[Univ. Grenoble Alpes, UFR |M2AG, MoSIG 1 PLCD - Master 1 info SLPC Notations and main results in While, Block, Proc,, and the various semantics| [Univ. Grenoble Alpes, UFR IMZAG, MoSIG 1 PLCD - Master 1 info SLPC Notations and main results in While, Block, Proc,, and the various semantics{
Transition rules for blocks Outline - Notations and main results in While, Block, Proc,
Transition system for statements and the various semantics
Definition 15 (Natural operational semantics of Block)
» Configurations:
Stm x Envy” x Store U Store
. Natural Operational Semantics (NOS
» Transitions: P ()
(Dv,p,[],0)=o(p1,0") (S,p®pi,0") = 0"
(begin Dv S end, p,0) — o
o NOS of Proc
> OR Transitions (when there is only un-initialised variables)
(Dv,[)=o pi (S.p®p1,0) = o
(begin Dy S end, p,0) — o’
Viiés Falcone (ylies. fal —grenoble-alpes. fr) 32146||_ Viies Falcone (ylies.falconeouniv-grenoble-alpes. fr) 33 | 4
[Univ. Grenoble Alpes, UFR IMZAG, MoSIG 1 PLCD - Master 1 info SLPC Notations and main results in While, Block, Proc,, and the various semantics| [Univ. Grenoble Alpes, UFR IMQAG, MoSIG 1 PLCD - Master 1 info SLPC Notations and main results in While, Block, Proc,, and the various semantics
Semantics with dynamic scope for variables and procedures Semantics with dynamic scope: transition system
Semantic domains .+ . * *
Configurations: (Stm x Envp™ x Envy” x Store) U Store
~—~
non-final configurations final
configurations
Procedure names belong to a syntactic category called Pname. Transition rules: , . , ,
(Dv,p,[],0) = (pr,0") (S, A@upd([], Dp), p® p1,0') = "
(begin Dy Dp S end, \,p,0) = o”
Semantic domains for dynamic scope OR (when there is only uninitialised variabl
.)) en there is o tialised variables):
Envy = Var P Loc Sp Variable environment (when re 1s only uninitial van)
Store = Loc™'Z30 Store (Dv,p) =p p (S, A& upd([], Dp),p,0) = o
Enve = Pname 2% Stm> X\ Procedure environment (begin Dy Dp S end,), p,0) — o
where upd(A, €) = A and upd(\, proc p is S; Dp) = upd(A[p — S], Dp)
iti i i i (A(p), A p,0) = o’
Addltlonal/replacemerllt_[semantlc domains for static scope ﬁ We “load” the code associated with p.
Envp = Pname 25 Stm x Envp* x Envy* 5 A Local procedure environment po
Envp™ = stacks over Envp 5 A Global procedure env. Updating the rule for sequential composition:
. , N . Remark 51 and S, execute
(51, p.0) = 7 (S2,Ap,0") = o within the same environments.
(S1: S2,A,p,0) = " a
Similarly, other rules are adapted in a straightforward manner. ..
Vliés Falcone (ylies.falconeQuniv-grenoble-alpes.fr) 34146||_ Viies Falcone (ylies.falconeouniv-grenoble-alpes. fr) 35| 46|
[Univ. Grenoble Alpes, UFR IMZAG, MoSIG 1 PLCD - Master 1 info SLPC Notations and main results in While, Block, Proc,, and the various semantics| [Univ. Grenoble Alpes, UFR IMQAG, MoSIG 1 PLCD - Master 1 info SLPC Notations and main results in While, Block, Proc,, and the various semantics
Semantics with static scope for variables and procedures: transition system Outline - Notations and main results in While, Block, Proc,
Definition 16 (Updating the procedure environment) and the various semantics
upd: Envp® x Envy" x Envp X Decp — Envp
—— ——— ~—— —— ~——
global global current local procedure produced
proc. env. var. env. proc. env. declaration proc. env.
> upd(g, 4, A, €) = Aj, and
> upd(Ag, §, Ar, proc pis S; Dp) = upd(Ag, p, Mi[p — (S, As © Ar, p)], Dp).
Definition 17 (Transition system for Proc with static scope)
Configurations: (Stm x Envp™ x Envy " x Store) U Store
——
non-final configurations final
Transition rules: configurations
» Block: Structural Operational Semantics
(Dv,p,[1.0) = (p1,0") (S, A@upd(A,p & pi,[], Dp),p & p1,0”) = o”
(begin Dy Dp S end, \, p,0) — o”
» Procedure call:
(8, N, p,0) > o We “load” the code and
T environments associated with p
(call p, A, p,0) = o . "o
" . (memory is “loaded” as is).
where A(p) = (5, X, p').
Viiés Falcone (ylies.falconeGuniv-grenoble-alpes.fr) 36| 46| | Yiies Falcone (ylies.falconeGuniv-grenoble-alpes.fr) 37 46
[Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Notations and main results in While, Block, Proc,, and the various semantics| [Univ. Grenoble Alpes, UFR IMEAG, MoSIG 1 PLCD - Master 1 info SLPC Notations and main results in While, Block, Proc,, and the various semantic:
Transition system Rules defining the transitions
Axioms
———— [skipsos] [asssos]
(skip,o) = o (x = a,0) = o[x — Ala]o]
Rules for sequential statements
. . . (S1,0) =0’ (S1,0) = (S1,0")
Transition system for structural operational semantics T [coml,,] " [comw?,,]
1. T = (Stm x State) U State (51:52,0) = (S2,07) (51:52,0) = (S1; S2,07)
_ Non-final configurations " . . . " . . "
2. T = State & " ‘execution of S; has terminated ‘execution of S; has not terminated
are related to non-final
3. =C (Stm x State) x ((Stm x State) U State) and final ones. Rules for conditional statements
4. = defined by derivation sequences
4 q If Bbjo = tt, then If Blblo = fF, then
. - el . el
(if b then Sy else S, fi,0) = (S1,0) (if b then Sy else S, fi,0) = (S2,0) = **
Rule for iterative statements (unbounded)
- . . — [#hilegos]
(while b do S od,) = (if b then (S;while b do S od) else skip fi, o)
Viiés Falcone (ylies.fal — grenoble-alpes. fr) 381 46| | Yiies Falcone (ylies.fa1 —grencble-alpes.£r) 30| 46

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Notations and main results in While, Block, Proc,, and the various semantics|

Derivation sequence and execution

Definition 18 (Derivation sequences)

or

Y1, Y25 - -
where:

> A

Vi

> A

=

~iz1, for i > 1, and

Definition 19 (Execution of a statement)
The execution(s) of a statement S on a state o is/are the maximal derivation
sequence(s) starting with the initial configuration (S, o).

Definition 20 (The Ssos semantic function)

if (S,0)="0"
undef otherwise

’
o

SeoslSlo = {

Yiiés Falcone (ylies. falconeGuniv-grenoble-alpes.fr) 40| ag)

Univ. Grenoble Alpes, UFR IM?AG, MoSIG 1 PLCD - Master 1 info SLPC Notations and main results in While, Block, Proc,, and the various semantics

Properties with respect to While

Lemma 1 (Composing statements)
For every statement S1, S, € Stm, state o € State, and k € N:

(S1,0) = o’ implies (51; 2, 0) = (S2;07)

(Executing a statement is not influenced by the sequentially composed
statement — S, in the lemma)

Lemma 2 (Decomposing computations in SOS)
For every statement 51, S, € Stm, state o € State, and k € N:

(51;2,0) = 0" implies
there exist o’ and ki s.t. (S1,0) = o' and (S,0') =" o".

Theorem: equivalence of NOS and SOS for While
For every statement S in Stm: Sus[S] = Seos[S].

Viiés Falcone (ylies. falconeuniv-grenoble-alpes.fr) 414

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Notations and main results in While, Block, Proc,, and the various semantics|

Properties with respect to extensions of While

SOS distinguishes between blocking and non-termination.

Natural/structural operational semantics and looping
» In NOS, non-determinism “hides” looping, if possible.

» In SOS, non-determinism does not “hide” looping.

Natural vs Structural (operational) semantics and interleaving

» Natural semantics:

> does not allow to express interleaving

> executions of atomic constituents are atomic
» Structural semantics:

> allows to express interleaving
> we focus on the small steps of computations

Yiiés Falcone (ylies. falconeGuniv-grenoble-alpes.fr) 42| ag)

Univ. Grenoble Alpes, UFR IM?AG, MoSIG 1 PLCD - Master 1 info SLPC

Outline - Notations and main results in While, Block, Proc,
and the various semantics

Notations and main results in While, Block, Proc,, and the various semanticg

Axiomatic Semantics

Yliés Falcone (ylies. falconeQuniv-grenoble-alpes. fr) 4349

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Notations and main results in While, Block, Proc,, and the various semantics|

Definitions
Definition 21 (Hoare Triple - Assertion)
{P}s
A logical variable is a variable not appearing in the program.
Definition 22 (Predicate)

A predicate is a function from State to {tt, ff} denoted using the syntactic
category Bexp extended with logical variables.

, with S: statement, P: pre-condition, (): post-condition.

Definition 23 (Predicates True and False)
Predicates True and False hold on all and no states, respectively.

Boolean operators
» Pi A P> denotes the function associating P1(o) and P(c),

» P1V P> denotes the function associating Pi(o) or P2(c),

» —P: denotes the function associating not (P(c)),

» P = P, denotes the function associating P1(c) implies P(c),
to any state o € State.

Definition 24 ((Syntactic) substitution)

For x € Var and a € Aexp, P[a/x] is a predicate obtained by replacing each
occurrence of x by a in P.

Yliés Falcone (ylies. falconeGuniv-grenoble-alpes.fr) 44 46)

[Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC

The complete inference system

Notations and main results in While, Block, Proc,, and the various semantic:

Rule name original generalized
P = Q
Skip {P} skip {P} skip
Q = Pla/x]
Assignment {Pla/x]} x:=a {Q}x:=a
{P} S {Q} S {P} S R = R {R:} S
Sequential [P} 51,5 [P} S1; 5
{bA P} St {=bAP} S
Conditional {P} if b then S; else S fi
{bAP}S P =1 {bAI}S IN-b = Q
Iterative | {P} while b do S od {P} while b do S od
{P'}S
Consequence If P= P’ and = Q, then: {P} S

When inferring {P} S (with rules and axioms), we note: -, {P} S

Yiigs Falcone (ylies. falconeuniv-grenoble-alpes.fr) 45|44

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC
Properties of the semantics

Notations and main results in While, Block, Proc,, and the various semantics|

Definition 25 (Semantic equivalence between programs)

S1 and S; are provably equivalent according to the axiomatic semantics (for
partial correctness) if

» for all pre-conditions P,

» for all post-conditions

Definition 26 (Validity of a Hoare triple)
Triple {P} S is valid, noted

Ep{P}S
We say that S is partially correct
iff for all states 0,0’ € State: wrt. P and
» if P(0) and (S,0) = o’
» then Q(o”).
Soundness (We can infer only valid triples)
If b, {P}S then F, {P} S

Completeness (We can infer all valid triples)
If £, (P} S {Q) then Fp (P} S

Yiiés Falcone (ylies.fal v-grenoble-alpes. fr) 46 a6)

