
S-2-S versus back-end / static versus dynamic:
Making the most of both, or
why compiler architecture must be deeply revisited

Fabrice Rastello∗

∗Inria

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 1 / 37

Outline

1 Today
Trends
Compiler technology today
Source-to-source versus back-end / static versus dynamic

2 Let us be hybrid!
Example: Split compilation
Example: Hybrid analysis

3 Some Challenges
Telescoping
Trading time with space. Example: Static Single Assignment form

4 Conclusion

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 2 / 37

Outline

1 Today
Trends
Compiler technology today
Source-to-source versus back-end / static versus dynamic

2 Let us be hybrid!
Example: Split compilation
Example: Hybrid analysis

3 Some Challenges
Telescoping
Trading time with space. Example: Static Single Assignment form

4 Conclusion

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 3 / 37

2005: we must replicate!

frequency wall, ILP wall, power wall→ replication (uniform)

→ Parallelism is ubiquitous

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 4 / 37

2005: we must replicate!

frequency wall, ILP wall, power wall→ replication (uniform)

source SCiDAC

→ Parallelism is ubiquitous

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 4 / 37

Now: we must be heterogeneous!

power budget→ specialized architectures, different designs (latency
throughput), dynamic voltage/frequency scaling. Fast changes, new
languages.

power wall→ NoC, heterogeneous (cores/memory)

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 5 / 37

Yes, we can!

Security, portability, elasticity

Era of (complex/irregular) simulation

→ virtualization
Middleware has never been so critically important

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 6 / 37

“bytecode faster than native code” but

parallelization is difficult

single chip limitations: dark silicon, power sloshing→ no simple cost
model

limited time budget

→When/Where to do the work?

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 7 / 37

Compiler technology today

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 8 / 37

Pro ahead-of-time and source-level

Pro ahead-of-time
static optimization time is free with respect to execution time

Pro source-level
source-level leverages code structure, memory access patterns, type
information

source-level provides precise recognizable feedback to the user

binary-level has to discover the obvious

binary-level has to retrieve multidimensional arrays, memory
transformations (scalarization, expansion, privatization, array of
struct, padding, ...)

retrieve, retrieve, retrieve...

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 9 / 37

Pro run-time and machine-level

Pro run-time
today algorithms behavior dominated by data characteristics

combinatorial of possible versions

Pro machine-level
IR to binary fast

source code not always available

best exploitation of ISA, actual hardware is known

instruction level parallelism (eg SWP), register level optimization (eg
scalar promotion, register tiling)

machine model, fine grain profiling

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 10 / 37

Why did we lose the battle of performance portability

Importance of static semantics

Importance of delaying choice until information is available

Contradiction: accurate information only available after the most
important choices already made

Deferred compilation enables JIT optimization when accurate
information available but loses much of the static semantics carrying
choice opportunities

→ be hybrid! Do split compilation using rich intermediate languages!

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 11 / 37

Outline

1 Today
Trends
Compiler technology today
Source-to-source versus back-end / static versus dynamic

2 Let us be hybrid!
Example: Split compilation
Example: Hybrid analysis

3 Some Challenges
Telescoping
Trading time with space. Example: Static Single Assignment form

4 Conclusion

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 12 / 37

Split compilation: motivation

Hard Optimisation Problem:
Exponential complexity algorithm

Execution context dependent (data-set, target)

Difficulty:
1 Exploit information from expensive analysis

2 When execution context is known

How to achieve these goals simultaneously?
Split complex and target-dependent optimisations into two coordinated
stages: offline (static compiler) and online (JIT compiler)

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 13 / 37

Decoupled Register Allocation

Procedure Example

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Decoupled Register Allocation

Procedure

Allocation
(Choose register

residents)

Example

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Decoupled Register Allocation

Procedure

Allocation
(Choose register

residents)

Assignment
(map each sub-variable

to a register)

Example

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Decoupled Register Allocation

Procedure

Allocation
(Choose register

residents)

Assignment
(map each sub-variable

to a register)

Example

1: d = ...
2: b = load …
3: b = b * d
4: a = load …
5: a = d / a
6: c = a / b
7: a = b + c
8: store c
9: store a

code

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Decoupled Register Allocation

Procedure

Allocation
(Choose register

residents)

Assignment
(map each sub-variable

to a register)

Example

1: d = ...
2: b = load …
3: b = b * d
4: a = load …
5: a = d / a
6: c = a / b
7: a = b + c
8: store c
9: store a

d
b,d
b,d
a,b,d
a,b
b,c
a,c
a

code live

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Decoupled Register Allocation

Procedure

Allocation
(Choose register

residents)

Assignment
(map each sub-variable

to a register)

Example

1: d = ...
2: b = load …
3: b = b * d
4: a = load …
5: a = d / a
6: c = a / b
7: a = b + c
8: store c
9: store a

d
b,d
b,d
a,b,d
a,b
b,c
a,c
a

code live
1
2
2
3
2
2
2
1

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Decoupled Register Allocation

Procedure

Allocation
(Choose register

residents)

Assignment
(map each sub-variable

to a register)

Example

1: d = ...
2: b = load …
3: b = b * d
4: a = load …
5: a = d / a
6: c = a / b
7: a = b + c
8: store c
9: store a

d
b,d
b,d
a,b,d
a,b
b,c
a,c
a

code live
1
2
2
3
2
2
2
1

 2 Available
registers

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Decoupled Register Allocation

Procedure

Allocation
(Choose register

residents)

Assignment
(map each sub-variable

to a register)

Example

1: d = ...
2: b = load …
3: b = b * d
4: a = load …
5: a = d / a
6: c = a / b
7: a = b + c
8: store c
9: store a

d
b,d
b,d
a,b,d
a,b
b,c
a,c
a

code live
1
2
2
3
2
2
2
1

maxlive
 2 Available
registers

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Decoupled Register Allocation

Procedure

Allocation
(Choose register

residents)

Assignment
(map each sub-variable

to a register)

Example

1: d = ...
2: b = load …
3: b = b * d
4: a = load …
5: a = d / a
6: c = a / b
7: a = b + c
8: store c
9: store a

d
b,d
b,d
a,b,d
a,b
b,c
a,c
a

code live
1
2
2
3
2
2
2
1

maxlive
 2 Available
registers

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Decoupled Register Allocation

Procedure

Allocation
(Choose register

residents)

Assignment
(map each sub-variable

to a register)

Example

1: d = ...
2: b = load …
3: b = b * d
4: a = load …
5: a = d / a
6: c = a / b
7: a = b + c
8: store c
9: store a

d
b,d
b,d
a,b,d
a,b
b,c
a,c
a

code live
1
2
2
3
2
2
2
1

maxlive
 2 Available
registers

a

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Decoupled Register Allocation

Procedure

Allocation
(Choose register

residents)

Assignment
(map each sub-variable

to a register)

Example

1: d = ...
2: b = load …
3: b = b * d
4: a = load …
5: a = d / a
6: c = a / b
7: a = b + c
8: store c
9: store a

d
b,d
b,d
a,b,d
a,b
b,c
a,c
a

code live
1
2
2
3
2
2
2
1

maxlive
 2 Available
registers

a

b

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Decoupled Register Allocation

Procedure

Allocation
(Choose register

residents)

Assignment
(map each sub-variable

to a register)

Example

1: d = ...
2: b = load …
3: b = b * d
4: a = load …
5: a = d / a
6: c = a / b
7: a = b + c
8: store c
9: store a

d
b,d
b,d
a,b,d
a,b
b,c
a,c
a

code live
1
2
2
3
2
2
2
1

maxlive
 2 Available
registers

a

bc

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Decoupled Register Allocation

Procedure

Allocation
(Choose register

residents)

Assignment
(map each sub-variable

to a register)

Example

1: d = ...
2: b = load …
3: b = b * d
4: a = load …
5: a = d / a
6: c = a / b
7: a = b + c
8: store c
9: store a

d
b,d
b,d
a,b,d
a,b
b,c
a,c
a

code live
1
2
2
3
2
2
2
1

maxlive
 2 Available
registers

a

bc

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Decoupled Register Allocation

Procedure

Allocation
(Choose register

residents)

Assignment
(map each sub-variable

to a register)

Example

1: d = ...
2: b = load …
3: b = b * d
4: a = load …
5: a = d / a
6: c = a / b
7: a = b + c
8: store c
9: store a

d
b,d
b,d
a,b,d
a,b
b,c
a,c
a

code live
1
2
2
3
2
2
2
1

maxlive
 2 Available
registers

a

bc

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Decoupled Register Allocation

Procedure

Assignment
(map each sub-variable

to a register)

Allocation
(Choose register

residents)
splitting

Example

1: d = ...
2: b = load …
3: b = b * d
4: a = load …
5: a = d / a
6: c = a / b
7: a = b + c
8: store c
9: store a

d
b,d
b,d
a,b,d
a,b
b,c
a,c
a

code live
1
2
2
3
2
2
2
1

 2 Available
registers

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Decoupled Register Allocation

Procedure

Assignment
(map each sub-variable

to a register)

Allocation
(Choose register

residents)
splitting

Example

1: d = ...
2: b = load …
3: b = b * d
4: a = load …
5: a = d / a
6: c = a / b
7: a = b + c
8: store c
9: store a

d
b,d
b,d
a,b,d
a,b
b,c
a,c
a

code live
1
2
2
3
2
2
2
1

 2 Available
registers

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Decoupled Register Allocation

Procedure

Assignment
(map each sub-variable

to a register)

Allocation
(Choose register

residents)
splitting

Example

1: d = ...
2: b = load …
3: b = b * d
4: a = load …
5: a = d / a
6: c = a / b
7: a = b + c
8: store c
9: store a

d
b,d
b,d
a,b,d
a,b
b,c
a,c
a

code live
1
2
2
3
2
2
2
1

 2 Available
registers

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Decoupled Register Allocation

Procedure

Assignment
(map each sub-variable

to a register)

Allocation
(Choose register

residents)
splitting

Example

1: d = ...
2: b = load …
3: b = b * d
4: a1 = load …
5: a2 = d / a1
6: c = a2 / b
7: a3 = b + c
8: store c
9: store a3

d
b,d
b,d
a,b,d
a,b
b,c
a,c
a

code live
1
2
2
3
2
2
2
1

 2 Available
registers

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Decoupled Register Allocation

Procedure

Assignment
(map each sub-variable

to a register)

Allocation
(Choose register

residents)
splitting

Example

1: d = ...
2: b1= load …
3: b2= b1 * d
4: a1= load …
5: a2= d / a1
6: c1= a2 / b2
7: a3= b2 + c1
8: store c1
9: store a3

d
b1,d
b2,d
a1,b2,d
a2,b2
b2,c1
a3,c1
a3

code live
1
2
2
3
2
2
2
1

 2 Available
registers

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Decoupled Register Allocation

Procedure

Assignment
(map each sub-variable

to a register)

Allocation
(Choose register

residents)
splitting

Example

1: d = ...
2: b1= load …
3: b2= b1 * d
4: a1= load …
5: a2= d / a1
6: c1= a2 / b2
7: a3= b2 + c1
8: store c1
9: store a3

d
b1,d
b2,d
a1,b2,d
a2,b2
b2,c1
a3,c1
a3

code live
1
2
2
3
2
2
2
1

 2 Available
registersmaxlive

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Decoupled Register Allocation

Procedure

Assignment
(map each sub-variable

to a register)

Allocation
(Choose register

residents)
splitting

Example

1: d = ...
2: b1= load …
3: b2= b1 * d
4: a1= load …
5: a2= d / a1
6: c1= a2 / b2
7: a3= b2 + c1
8: store c1
9: store a3

d
b1,d
b2,d
a1,b2,d
a2,b2
b2,c1
a3,c1
a3

code live
1
2
2
3
2
2
2
1

 2 Available
registersmaxlive

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Decoupled Register Allocation

Procedure

Assignment
(map each sub-variable

to a register)

Allocation
(Choose register

residents)
splitting

Example

1: d = ...
2: b1= load …
3: b2= b1 * d
4: a1= load …
5: a2= d / a1
6: c1= a2 / b2
7: a3= b2 + c1
8: store c1
9: store a3

d
b1,d
b2,d
a1,b2,d
a2,b2
b2,c1
a3,c1
a3

code live
1
2
2
3
2
2
2
1

 2 Available
registersmaxlive

b1

b2

a2a1

c1a3

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Decoupled Register Allocation

Procedure

Assignment
(map each sub-variable

to a register)

Allocation
(Choose register

residents)
splitting

Example

1: d = ...
2: b1= load …
3: b2= b1 * d
4: a1= load …
5: a2= d / a1
6: c1= a2 / b2
7: a3= b2 + c1
8: store c1
9: store a3

d
b1,d
b2,d
a1,b2,d
a2,b2
b2,c1
a3,c1
a3

code live
1
2
2
3
2
2
2
1

 2 Available
registersmaxlive

b1

b2

a2a1

c1a3

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 14 / 37

Global view of Split Register Allocation

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 15 / 37

Global view of Split Register Allocation

Allocation

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 15 / 37

Global view of Split Register Allocation

Allocation
maxlive

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 15 / 37

Global view of Split Register Allocation

Allocation
maxlive
splitting

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 15 / 37

Global view of Split Register Allocation

Offline stage

Allocation
maxlive
splitting

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 15 / 37

Global view of Split Register Allocation

Offline stage

Allocation
maxlive
splitting

annotation

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 15 / 37

Global view of Split Register Allocation

Offline stage

AssignmentAllocation
maxlive
splitting

annotation

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 15 / 37

Global view of Split Register Allocation

Offline stage

Assignment

Online stage

Allocation
maxlive
splitting

annotation

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 15 / 37

Stages of Split Register Allocation

code

offline

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 16 / 37

Stages of Split Register Allocation

code

offline

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 16 / 37

Stages of Split Register Allocation

ILP

code

offline

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 16 / 37

Stages of Split Register Allocation

ILP

code

offline

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 16 / 37

Stages of Split Register Allocation

ILP

spill-set

code

offline

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 16 / 37

Stages of Split Register Allocation

ILP

spill-set

code

offline

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 16 / 37

Stages of Split Register Allocation

ILP

compress

spill-set

code

offline

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 16 / 37

Stages of Split Register Allocation

ILP

compress

spill-set

code

offline

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 16 / 37

Stages of Split Register Allocation

ILP

compress

spill-set

compressed
spill-set

code

offline

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 16 / 37

Stages of Split Register Allocation

offline

ILP

compress

spill-set

compressed
spill-set

code

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 16 / 37

Stages of Split Register Allocation

offline

ILP

compress

spill-set

compressed
spill-set

code

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 16 / 37

Stages of Split Register Allocation

offline

ILP

compress

spill-set

compressed
spill-set

code

online

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 16 / 37

Stages of Split Register Allocation

offline

ILP

compress

allocator

spill-set

compressed
spill-set

code

online

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 16 / 37

Stages of Split Register Allocation

offline

ILP

compress

allocator

spill-set

compressed
spill-set

code

online

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 16 / 37

Stages of Split Register Allocation

offline

ILP

compress

allocator

spill-set

compressed
spill-set

code allocated
code

online

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 16 / 37

Stages of Split Register Allocation

offline online

ILP

compress

allocator

spill-set

compressed
spill-set

code allocated
code

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 16 / 37

Experiments: Framework

Framework:
JikesRvm 3.0.1

CPLEX (ILP)

SPEC JVM98 benchmarks

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 17 / 37

Experiments: Compression

check compress jess ray trace db javac mpegaudio mtrt jack

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

compression rate

removed spills
annotated spills

benchmarks

op
tim

al
 s

pi
ll-

se
t

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 18 / 37

Experiments: Allocation cost

check compress jess raytrace db javac mpegaudio mtrt jack average

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

split compilation cost w.r.t. optimal cost
lower is better

Without annotation
Bytecode annotation
LIR annotation (*)
All l ive range annotation

benchmarks

al
lo

ca
tio

n
co

st
 /

op
tim

al
 c

os
t

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 19 / 37

Experiments: Speedups

check compress jess raytrace db javac mpegaudio mtrt jack average

0.9

0.95

1

1.05

1.1

1.15

speedup of annotated code

Bytecode annotation
LIR annotation (*)
All live range annota-
tion

benchmarks

sp
e

e
d

u
p

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 20 / 37

Portability in register counts 1/2

0

1

2

3

4

5

a b c d e

2

2 1

2 3

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 21 / 37

Portability in register counts 1/2

0

1

2

3

4

5

a b c d e

2

2 1

2 3
2 available
registers

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 21 / 37

Portability in register counts 1/2

0

1

2

3

4

5

a b c d e

2

2 1

2 3
2 available
registers

Optimal spill-set =

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 21 / 37

Portability in register counts 1/2

0

1

2

3

4

5

a b c d e

2

2 1

2 3
2 available
registers

Optimal spill-set =

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 21 / 37

Portability in register counts 1/2

0

1

2

3

4

5

a b c d e

2

2 1

2 3
2 available
registers

Optimal spill-set = {c}

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 21 / 37

Portability in register counts 1/2

0

1

2

3

4

5

a b c d e

2

2 1

2 3
2 available
registers

Optimal spill-set = {c}

0

1

2

3

4

5

a b c d e

2

2 1

2 3

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 21 / 37

Portability in register counts 1/2

0

1

2

3

4

5

a b c d e

2

2 1

2 3
2 available
registers

Optimal spill-set = {c}

0

1

2

3

4

5

a b c d e

2

2 1

2 3
1 available
register

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 21 / 37

Portability in register counts 1/2

0

1

2

3

4

5

a b c d e

2

2 1

2 3
2 available
registers

Optimal spill-set = {c}

0

1

2

3

4

5

a b c d e

2

2 1

2 3

Optimal spill-set =

1 available
register

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 21 / 37

Portability in register counts 1/2

0

1

2

3

4

5

a b c d e

2

2 1

2 3
2 available
registers

Optimal spill-set = {c}

0

1

2

3

4

5

a b c d e

2

2 1

2 3

Optimal spill-set =

1 available
register

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 21 / 37

Portability in register counts 1/2

0

1

2

3

4

5

a b c d e

2

2 1

2 3
2 available
registers

Optimal spill-set = {c}

0

1

2

3

4

5

a b c d e

2

2 1

2 3

Optimal spill-set = {b,d}

1 available
register

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 21 / 37

Portability in register counts 1/2

0

1

2

3

4

5

a b c d e

2

2 1

2 3
2 available
registers

Optimal spill-set = {c}

0

1

2

3

4

5

a b c d e

2

2 1

2 3

Optimal spill-set = {b,d}

1 available
register

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 21 / 37

Portability in register counts 1/2

0

1

2

3

4

5

a b c d e

2

2 1

2 3
2 available
registers

Optimal spill-set = {c}

0

1

2

3

4

5

a b c d e

2

2 1

2 3

Optimal spill-set = {b,d}

1 available
register

{c} ⊄ {b,d}

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 21 / 37

Portability in register counts 2/2

Experimental study
Varying the number of registers from 2 to the maximal number where
spilling is needed

Result

Inclusion property holds for 99.83% of the SPEC JVM98’s methods

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 22 / 37

Portability in register counts 2/2

Experimental study
Varying the number of registers from 2 to the maximal number where
spilling is needed

Result
Inclusion property holds for 99.83% of the SPEC JVM98’s methods

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 22 / 37

Hybrid Analysis
Static analysis versus profiling

static analysis: find/prove true facts (usually through an abstract
interpretation)
profiling: find probable facts using instrumentation through actual
executions

dependencies
for (j=0 ; i<m ; j++)
for (i=0 ; j<n ; i++)
t[H*i+j] =

t[-H+H*i+j]
+ t[-1-H+H*i+j];

Fuzzy Array Data-flow Analysis
∀I = (i, j) <lex (i′, j′) = I′,
I′ depends on I

(i, j) depends on (i − 1, j)
and on (i − 1, j − 1)

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 23 / 37

Hybrid Analysis
Static analysis versus profiling

static analysis: find/prove true facts (usually through an abstract
interpretation)
profiling: find probable facts using instrumentation through actual
executions

dependencies
for (j=0 ; i<m ; j++)
for (i=0 ; j<n ; i++)
t[H*i+j] =

t[-H+H*i+j]
+ t[-1-H+H*i+j];

run-time dependence profiling
(i, j) depends on (i − 1, j)

and on (i − 1, j − 1)

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 23 / 37

Hybrid Analysis

with cloning
if (m <= H || m<2) {
for (i=0 ; i<n ; i++)
forvec (j=0 ; j<m ; j++)
t[H*i+j] = t[-H+H*i+j] + t[-1-H+H*i+j];

} else {
for (j=0 ; j<m ; j++)
for (i=0 ; i<n ; i++)
t[H*i+j] = t[-H+H*i+j] + t[-1-H+H*i+j];

}

impact of locality + vectorization (n = 104, m = h = 104)
... on my laptop

without cloning: 0.4s

with cloning: 0.07s

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 24 / 37

Outline

1 Today
Trends
Compiler technology today
Source-to-source versus back-end / static versus dynamic

2 Let us be hybrid!
Example: Split compilation
Example: Hybrid analysis

3 Some Challenges
Telescoping
Trading time with space. Example: Static Single Assignment form

4 Conclusion

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 25 / 37

Ahead-of-time (combinatorial) versus just-in-time
(slow) code generation

Combinatorial
code cloning: generate (optimized) versions, one for each possible
environment

code skeletons: generate skeletons of code to be completed at
run-time

dynamic compilation (/binary translation): generate code at run-time

→ we need hybrid intermediate representation

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 26 / 37

Low level (fast and accurate) code representation
versus High level (semantic) information

Telescoping
Machine level code: required for machine model, faster to generate
binary (binary itself is possible)

High level semantic (arrays, data-flow, iterators, abstract data-types,
parallelism): higher level cost model, validity of transformations

→We need redundancy!. But telescoping is difficult.

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 27 / 37

Trading time with space.
Satic Single Assignment form

Static Single Assignment textually one definition per variable
φ-function copy that selects the correct value

·(a, b)← . . .

·if b < a then
· c← a − b
· if c > 10 then
· c← c mod 10
· endif
·else
· c← 0
·endif
·return c

r

(a, b)← . . .

if b < a

c← a − b
if c > 10 c← 0

c← c mod 10

return c

r

(a, b)← . . .

if b < a

c1 ← a − b
if c1 > 10

c3 ← 0

c2 ← c1 mod 10

c4 ← φ(c2, c1, c3)
return c4

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 28 / 37

Tree-shape. Dominance

Dominance relation

a single entry node r.

each node reachable from r.

a dominates b if every path
from r to b contains a.

Properties

The dominance relation
induces a tree.

r=0

1 9

2

5

6

7

8

3

4

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 29 / 37

Tree-shape. Dominance

Dominance relation

a single entry node r.

each node reachable from r.

a dominates b if every path
from r to b contains a.

Properties

The dominance relation
induces a tree.

1 dominates 4?

r=0

1 9

2

5

6

7

8

3

4

1

4

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 29 / 37

Tree-shape. Dominance

Dominance relation

a single entry node r.

each node reachable from r.

a dominates b if every path
from r to b contains a.

Properties

The dominance relation
induces a tree.

1 dominates 4? YES

r=0

1 9

2

5

6

7

8

3

4

1

4

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 29 / 37

Tree-shape. Dominance

Dominance relation

a single entry node r.

each node reachable from r.

a dominates b if every path
from r to b contains a.

Properties

The dominance relation
induces a tree.

5 dominates 4?

r=0

1 9

2

5

6

7

8

3

4

5

4

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 29 / 37

Tree-shape. Dominance

Dominance relation

a single entry node r.

each node reachable from r.

a dominates b if every path
from r to b contains a.

Properties

The dominance relation
induces a tree.

5 dominates 4? NO

r=0

1 9

2

5

6

7

8

3

4

5

4

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 29 / 37

Tree-shape. Dominance

Dominance relation

a single entry node r.

each node reachable from r.

a dominates b if every path
from r to b contains a.

Properties

The dominance relation
induces a tree.

r=0

1 9

2

5

6

7

8

3

4

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 29 / 37

Static Single Assignment with dominance property

Strict code
Every path from r to a use traverses a
definition

Strict SSA
SSA: only one definition textually per
variable

Strict: the definition dominates all uses

r=0

1 9

2

5

6

7

8

3

4

x=

=x

=x

1

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 30 / 37

Static Single Assignment with dominance property

Strict code
Every path from r to a use traverses a
definition

Strict SSA
SSA: only one definition textually per
variable

Strict: the definition dominates all uses

r=0

1 9

2

5

6

7

8

3

4

x=

=x

=x

1

6

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 30 / 37

Static Single Assignment with dominance property

Strict code
Every path from r to a use traverses a
definition

Strict SSA
SSA: only one definition textually per
variable

Strict: the definition dominates all uses

r=0

1 9

2

5

6

7

8

3

4

x=

=x

=x

1

2

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 30 / 37

Liveness: sub-tree of a tree

The live-range of an SSA variable is
the set of program points
between the definition and a use
(without going through the definition again)

the definition dominates the entire
live-range

the live-range is a sub-tree of the
dominance-tree

r=0

1

2

3

4

5

6

7

8

9x=

=x

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 31 / 37

Liveness: sub-tree of a tree

The live-range of an SSA variable is
the set of program points
between the definition and a use
(without going through the definition again)

the definition dominates the entire
live-range

the live-range is a sub-tree of the
dominance-tree

r=0

1

2

3

4

5

6

7

8

9x=

=x

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 31 / 37

Interference check. The two extremes solutions
The query

two variables x and y

can x and y be allocated to the same register?

O(< |Vars| × |E|, |Vars|2, 1 >)
Compute liveness sets (for each basic-block) using data-flow

Compute interference graph. Store it using bit-matrix

A query is a simple bit-test

O(< 0, 0, |P| >)
No pre-computation

Traverses the CFG from uses of x (resp. y) to the definitions of x
(resp. y). If a definition of y (resp. x) is encountered during the
traversal answer yes. Otherwise answer no.

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 32 / 37

Under SSA with dominance property and def-use
chains
O(< |E|, |E|, |E| >)
X Dominance check in O(< |E|, |V |, 1 >)

Same than before but do not traverse all the programs, just
basic-blocks

O(< |E|, |V |, |Uses(x, y)| >)
X Dominance check in O(< |E|, |V |, 1 >)

X Forward reachability in O(< |E|, |V |, 1 >)

X Loop nesting forest in O(< |E|, |V | >)

X Outermost loop containing q excluding d in O(< |L|, |V |, 1 >)

Return false if neither def(x) dominates def(y) nor the reverse

If d = def(x) dom q = def(y);
h header of outermost loop containing q excluding d;
If a use of x is forward reachable from h return true.

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 33 / 37

Forward reachability in O(< |E|, |V |, 1 >)

r=0

1 9

2

5

6

7

8

3

4

5 forward-reaches 3? YES

0/0

1/2

2/3

3/7

4/8

5/9

6/4

7/5

8/6

9/1
r=0

1

5

6

7

8

2

3

4

9

0

1

2

3

4

5

6

7

8

9

r=0

9

1

5

2

3

4

6

7

8

0

2

3

7

8

9

4

5

6

1

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 34 / 37

Forward reachability in O(< |E|, |V |, 1 >)

r=0

1 9

2

5

6

7

8

3

4

7 forward-reaches 3? NO

0/0

1/2

2/3

3/7

4/8

5/9

6/4

7/5

8/6

9/1
r=0

1

5

6

7

8

2

3

4

9

0

1

2

3

4

5

6

7

8

9

r=0

9

1

5

2

3

4

6

7

8

0

2

3

7

8

9

4

5

6

1

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 34 / 37

Outline

1 Today
Trends
Compiler technology today
Source-to-source versus back-end / static versus dynamic

2 Let us be hybrid!
Example: Split compilation
Example: Hybrid analysis

3 Some Challenges
Telescoping
Trading time with space. Example: Static Single Assignment form

4 Conclusion

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 35 / 37

Compiler challenges in brief

Dynamic

Static

TransformationsAnalysis

Profiling run−time system

Machine

H
a
rd

w
a
re

A
p

p
li
c
a
ti

o
n

s

DSL/Source

Hybrid compilation

Hybrid byte−codes

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 36 / 37

Some pointers

Hybrid Analysis: Lawrence Rauchwerger

Split Compilation: Albert Cohen

Liveness example: “habilitation”

Static Single Assignment: The SSA book (in progress)

F. Rastello (Inria) Let us be hybrid SBLP, October 2014 37 / 37

	Today
	Trends
	Compiler technology today
	Source-to-source versus back-end / static versus dynamic

	Let us be hybrid!
	Example: Split compilation
	Example: Hybrid analysis

	Some Challenges
	Telescoping
	Trading time with space. Example: Static Single Assignment form

	Conclusion

