
SERIES

ONE

CODE GENERATION (OF ASSEMBLY CODE)

Exercise 1

We consider the following program.

main(c) {

int x, y, z;

x = 5;

y = 1;

z = x + y;

}

1. Determine the symbol table (integers are coded on 4 bytes).

2. Generate assembly code.

Exercise 2

Let us consider the following program with its symbol table.
var x, y : int ;

while (not x = y) do

if x > y then x := x - y else y := y - x fi

od

Environment
Procedure Shifting
main x → 4

y → 8

1. Generate code.

Exercise 3

1. Extend the code generation function to handle the following construct:

for (var = lbound; var < ubound; step) {

S(variable)

}

where:

� lbound and ubound are respectively the lower and upper bounds, given by arithmetical
expressions,

� S(var) is a statement that depends on variable, and

� step is an expression that is added to variable at the end of each iteration.

2. For the program below, generate assembly code.

int t1[10];

int i;

for(i=0;i<10;i++) { t1[i] = 0 }

3. For the program below, generate assembly code.

1



SERIES 1. CODE GENERATION (OF ASSEMBLY CODE)

int t1[10][10] ;

int i,j ;

for(i=0; i<10; i++) {

for(j=0; j<10; j++)

t1[i][j] = 0;

}

Exercise 4

Extend the code generation function seen for While.

1. To consider statements of the form repeat S until b ,

2. To consider Boolean expressions of the form b1 xor b2,

3. To consider arithmetical expressions of the form b ? e1 : e2.

Exercise 5

Let us consider the two following programs with their symbol tables. For each of them, generate code.
begin

var x : int ; var y : int ;

procedure p is

y := x ;

end

x := 1 ;

call p ;

end

Environment
Procedure Shifting
main x → 4

y → 8
main.p

Exercise 6

We consider the following program.
var x : int ; var y : int ; var z : int : // global variables (in main)

procedure p is

begin var x : int ; var t : int :

x := 4 ;

y := 5 ;

z := x + y ;

end

// program body (main)

x := 5;

call p ;

end

Environment
Procedure Shifting
main x 7→ 4

y 7→ 8
z 7→ 12

main.p x 7→ 4
t 7→ 8

1. Generate the corresponding assembly code.

Exercise 7

Let us consider the following program:

var x, y ; // global variables

proc p1 is

var y, z

in

y := x+1 ;

z := y+2 ;

y := z*3 ;

end

proc p2 is

var x, z

in

Univ. Grenoble Alpes 2 Master 1 (MoSIG and informatique)



SERIES 1. CODE GENERATION (OF ASSEMBLY CODE)

x := y-1 ;

call p1 ;

z := x*2 ;

end

begin

// program body

x := 1 ;

call p1 ;

call p2 ;

end

1. Draw the complete execution stack when procedure p2 is executed

2. Give the code produced for procedure p1

3. Give the code produced for procedure p2

4. Give the code produced for the program body

5. We change the code of p1 as follows:

proc p1 is

var y, z

in

y := x+1 ;

if y>0 then

x := x-1 ;

call p1 ;

else

call p2 ;

fi

end

1. Draw the complete execution stack when procedure p2 is executed (starting the program
from the beginning)

2. Give the new code produced for procedure p1

Exercise 8

Let us consider the following program where parameters are passed by value:

var x, y ; // global variables

proc p1(y, z) is

var t

in

t := x+z ;

y := t*2+y ;

end

proc p2 (t, v, w) is

var x, z

in

z := y+t-1 ;

call p1 (x, w+v) ;

w := t+z

end

begin

// program body

Academic Year 2024 - 2025 3 PLCD / SLPC — Tutorials / TD



SERIES 1. CODE GENERATION (OF ASSEMBLY CODE)

x := 1 ;

call p1 (x, 42) ;

call p2 (12, x, y) ;

end

1. Draw the complete execution stack when procedure p2 is executed

2. Give the code produced for procedure p1

3. Give the code produced for procedure p2

4. Give the code produced for the program body

5. We now consider that:

� parameter y of p1 is passed by address

� parameter w of p2 is passed by value-result

Indicate what is changed on your answers for questions 2, 3 and 4 . . .

Exercise 9

Let us consider the following program (where parameters are passed by value):

var z1 ;

var p proc (int) ; /* p is a procedure variable */

proc p1 (x : int) is z1 := x ;

proc p2 (q : proc (int)) is call q(2) ;

// program body

p := p2 ;

call p (p1) ;

1. Draw the complete execution stack when p1 is executed

2. Give the code produced for p1

3. Give the code produced for p2

4. Give the code produced for the program body.

Exercise 10

Let us consider the following program:

var x : int ; var y : int ; var z : int ; var a : int ; var b : int ; var c : int ;

c := 4 ;

x := a+b+c;

y := a * b + 2 * c ;

1. Generate 3-address code and then assembly code by supposing an unlimited number of registers.

2. Generate 3-address code and then assembly code by supposing that we have only 4 registers
R1, R2, R3, R4.

Univ. Grenoble Alpes 4 Master 1 (MoSIG and informatique)


