SEMANTICS WITH APPLICATIONS

A Formal Introduction

(©Hanne Riis Nielson (¢)Flemming Nielson

©The webpage http://www.daimi.au.dk/~hrn contains
information about how to download a copy of this book (sub-
ject to the conditions listed below).

The book may be downloaded and printed free of charge
for personal study; it may be downloaded and printed free
of charge by instructors for immediate photocopying to stu-
dents provided that no fee is charged for the course; these
permissions explicitly exclude the right to any other distri-
bution of the book (be it electronically or by making physical
copies).

All other distribution should be agreed with the authors.

This is a revised edition completed in July 1999; the original
edition from 1992 was published by John Wiley & Sons; this
should be acknowledged in all references to the book.

o

Contents

List of Tables vii
Preface ix
1 Introduction 1
1.1 Semantic description methods 0oL 1
1.2 The example language While 7
1.3 Semantics of expressions L. 9
1.4 Properties of the semantics 15
2 Operational Semantics 19
2.1 Natural semantics oo 20
2.2 Structural operational semanticso L. 32
2.3 Anequivalenceresulto L oL Lo 40
2.4 Extensions of While 44
2.5 Blocks and procedures 50
3 Provably Correct Implementation 63
3.1 The abstract machine 63
3.2 Specification of the translation 69
3.3 Correctness 73
3.4 An alternative proof technique 000, 81
4 Denotational Semantics 85
4.1 Direct style semantics: specification 85
4.2 Fixed point theoryo oL Lo 93
4.3 Direct style semantics: existence 107
4.4 Anequivalenceresulto 112
4.5 Extensions of While 117
5 Static Program Analysis 133
5.1 Properties and property states L. 135
5.2 Theanalysis Lo L 142

vi Contents
5.3 Safety of theanalysis 153
5.4 Bounded iterationo Lo 160

6 Axiomatic Program Verification 169
6.1 Direct proofs of program correctness 169
6.2 Partial correctness assertionso 175
6.3 Soundness and completeness, 183
6.4 Extensions of the axiomatic system 191
6.5 Assertions for execution timeo L. 200

7 Further Reading 209

A Review of Notation 213

Appendices 212

B Introduction to Miranda Implementations 217
B.1 Abstract syntaxo 217
B.2 Evaluation of expressions 218

C Operational Semantics in Miranda 221
C.1 Natural semantics Lo 221
C.2 Structural operational semantics 223
C.3 Extensionsof While 225
C.4 Provably correct implementation 227

D Denotational Semantics in Miranda 229
D.1 Direct style semantics 229
D.2 Extensions of While 000000, 230
D.3 Static program analysis Lo 230

Bibliography 233

Index of Symbols 235

Index

237

List of Tables

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2

6.1
6.2
6.3
6.4
6.5

The semantics of arithmetic expressions 13
The semantics of boolean expressions 14
Natural semantics for While.00 .. 20
Structural operational semantics for While 33
Natural semantics for statements of Block 52
Natural semantics for variable declarations 52
Natural semantics for Proc with dynamic scope rules 54
Procedure calls in case of mixed scope rules (choose one) 56
Natural semantics for variable declarations using locations 58
Natural semantics for Proc with static scope rules 59
Operational semantics for AM 65
Translation of expressions 70
Translation of statements in While 71
Denotational semantics for While 86
Denotational semantics for While using locations 119
Denotational semantics for variable declarations 121
Denotational semantics for non-recursive procedure declarations . . 122
Denotational semantics for Proc 123
Denotational semantics for recursive procedure declarations. 125
Continuation style semantics for While. 128
Continuation style semantics for Exc 130
Analysis of expressions 143
Analysis of statements in While 144
Axiomatic system for partial correctness 178
Axiomatic system for total correctness 192
Exact execution times for expressions 202
Natural semantics for While with exact execution times 203
Axiomatic system for order of magnitude of execution time 204

vii

viii List of Tables

Preface

Many books on formal semantics begin by explaining that there are three major
approaches to semantics, that is

e operational semantics,
e denotational semantics, and

e axiomatic semantics;

but then they go on to study just one of these in greater detail. The purpose of
this book is to

e present the fundamental ideas behind all of these approaches,

e to stress their relationship by formulating and proving the relevant theorems,
and

e to illustrate the applicability of formal semantics as a tool in computer
science.

This is an ambitious goal and to achieve it, the bulk of the development con-
centrates on a rather small core language of while-programs for which the three
approaches are developed to roughly the same level of sophistication. To demon-
strate the applicability of formal semantics we show

e how to use semantics for validating prototype implementations of program-
ming languages,

e how to use semantics for verifying analyses used in more advanced imple-
mentations of programming languages, and

e how to use semantics for verifying useful program properties including infor-
mation about execution time.

The development is introductory as is already reflected in the title. For this rea-
son very many advanced concepts within operational, denotational and axiomatic
semantics have had to be omitted. Also we have had to omit treatment of other
approaches to semantics, for example Petri-nets and temporal logic. Some pointers
to further reading are given in Chapter 7.

X

X Preface

Chapter 2
Sections 2.1-2.3

N

‘ Sections 2.4-2.5 ‘ w

Chapter 4
Sections 4.1-4.4

\
/

Chapter 5
[Section 4.5

Chapter 6
Sections 6.1-6.3

e

Overview

As isillustrated in the dependency diagram, Chapters 1, 2, 4, 6 and 7 form the core
of the book. Chapter 1 introduces the example language of while-programs that
is used throughout the book. In Chapter 2 we cover two approaches to operational
semantics, the natural semantics of G. Kahn and the structural operational se-
mantics of G. Plotkin. Chapter 4 develops the denotational semantics of D. Scott
and C. Strachey including simple fixed point theory. Chapter 6 introduces pro-
gram verification based on operational and denotational semantics and goes on to
present the axiomatic approach due to C. A. R. Hoare. Finally, Chapter 7 contains
suggestions for further reading.

The first three or four sections of each of the Chapters 2, 4 and 6 are devoted
to the language of while-programs and covers specification as well as theoretical

Preface x1

aspects. In each of the chapters we extend the while-language with various other
constructs and the emphasis is here on specification rather than theory. In Sections
2.4 and 2.5 we consider extensions with abortion, non-determinism, parallelism,
block constructs, dynamic and static procedures, and non-recursive and recursive
procedures. In Section 4.5 we consider extensions of the while-language with
static procedures that may or may not be recursive and we show how to handle
exceptions, that is, certain kinds of jumps. Finally, in Section 6.4 we consider an
extension with non-recursive and recursive procedures and we also show how total
correctness properties are handled. The sections on extending the operational,
denotational and axiomatic semantics may be studied in any order.

The applicability of operational, denotational and axiomatic semantics is illus-
trated in Chapters 3, 5 and 6. In Chapter 3 we show how to prove the correctness
of a simple compiler for the while-language using the operational semantics. In
Chapter 5 we prove an analysis for the while-language correct using the denota-
tional semantics. Finally, in Section 6.5 we extend the axiomatic approach so as
to obtain information about execution time of while-programs.

Appendix A reviews the mathematical notation on which this book is based. It
is mostly standard notation but some may find our use of — and ¢ non-standard.
We use D — E for the set of partial functions from D to E; this is because we
find that the D — FE notation is too easily overlooked. Also we use R ¢ S for
the composition of binary relations R and S; this is because of the different order
of composition used for relations and functions. When dealing with axiomatic
semantics we use formulae { P } S { @ } for partial correctness assertions but
{ P} S{J @} for total correctness assertions because the explicit occurrence of
|} (for termination) may prevent the student from confusing the two systems.

Appendices B, C and D contain implementations of some of the semantic speci-
fications using the functional language Miranda.! The intention is that the ability
to experiment with semantic definitions enhances the understanding of material
that is often regarded as being terse and heavy with formalism. It should be pos-
sible to rework these implementations in any functional language but if an eager
language (like Standard ML) is used, great care must be taken in the imple-
mentation of the fixed point combinator. However, no continuity is lost if these
appendices are ignored.

Notes for the instructor

The reader should preferably be acquainted with the BNF-style of specifying the
syntax of programming languages and should be familiar with most of the mathe-
matical concepts surveyed in Appendix A. To appreciate the prototype implemen-
tations of the appendices some experience in functional programming is required.

!Miranda is a trademark of Research Software Limited, 23 St Augustines Road, Canterbury,
Kent CT1 1XP, UK.

xii Preface

We have ourselves used this book for an undergraduate course at Aarhus University
in which the required functional programming is introduced “on-the-fly”.

We provide two kinds of exercises. One kind helps the student in his/her
understanding of the definitions/results/techniques used in the text. In particular
there are exercises that ask the student to prove auxiliary results needed for the
main results but then the proof techniques will be minor variations of those already
explained in the text. We have marked those exercises whose results are needed
later by “(Essential)”. The other kind of exercises are more challenging in that
they extend the development, for example by relating it to other approaches. We
use a star to mark the more difficult of these exercises. Exercises marked by two
stars are rather lengthy and may require insight not otherwise presented in the
book. It will not be necessary for students to attempt all the exercises but we
do recommend that they read them and try to understand what the exercises are
about.

Acknowledgements

In writing this book we have been greatly assisted by the comments and sug-
gestions provided by colleagues and reviewers and by students and instructors
at Aarhus University. This includes Anders Gammelgaard, Chris Hankin, Tor-
ben Amtoft Hansen, Jens Palsberg Jgrgensen, Ernst-Riidiger Olderog, David A.
Schmidt, Kirsten L. Solberg and Bernhard Steffen. Special thanks are due to Stef-
fen Grarup, Jacob Seligmann, and Bettina Blaaberg Sgrensen for their enthusiasm
and great care in reading preliminary versions.

Aarhus, October 1991 Hanne Riis Nielson

Flemming Nielson

Revised Edition

In this revised edition we have corrected a number of typographical errors and a
few mistakes; however, no major changes have been made. Since the publication
of the first edition we have obtained helpful comments from Jens Knoop and
Anders Sandholm. The webpage for the book now also contains implementations
of Appendices B, C and D in Gofer as well as in Miranda.

Aarhus, July 1999 Hanne Riis Nielson

Flemming Nielson

Chapter 1

Introduction

The purpose of this book is
e to describe some of the main ideas and methods used in semantics,
e to illustrate these on interesting applications, and
e to investigate the relationship between the various methods.

Formal semantics is concerned with rigorously specifying the meaning, or be-
haviour, of programs, pieces of hardware etc. The need for rigour arises because

e it can reveal ambiguities and subtle complexities in apparently crystal clear
defining documents (for example programming language manuals), and

e it can form the basis for implementation, analysis and verification (in par-
ticular proofs of correctness).

We will use informal set theoretic notation (reviewed in Appendix A) to represent
semantic concepts. This will suffice in this book but for other purposes greater
notational precision (that is, formality) may be needed, for example when process-
ing semantic descriptions by machine as in semantics directed compiler-compilers
or machine assisted proof checkers.

1.1 Semantic description methods

It is customary to distinguish between the syntax and the semantics of a pro-
gramming language. The syntaz is concerned with the grammatical structure of
programs. So a syntactic analysis of the program

Z!=X; X!=Y; yi=2

2 1 Introduction

will realize that it consists of three statements separated by the symbol ;. Each
of these statements has the form of a variable followed by the composite symbol
=’ and an expression which is just a variable.

The semantics is concerned with the meaning of grammatically correct pro-
grams. So it will express that the meaning of the above program is to exchange
the values of the variables x and y (and setting z to the final value of y). If we
were to explain this in more detail we would look at the grammatical structure of
the program and use explanations of the meanings of

e sequences of statements separated by ‘;’, and
e a statement consisting of a variable followed by ‘=’ and an expression.

The actual explanations can be formalized in different ways. In this book we shall
consider three approaches. Very roughly, the ideas are as follows:

Operational semantics: The meaning of a construct is specified by the compu-
tation it induces when it is executed on a machine. In particular, it is of
interest how the effect of a computation is produced.

Denotational semantics: Meanings are modelled by mathematical objects that
represent the effect of executing the constructs. Thus only the effect is of
interest, not how it is obtained.

Axiomatic semantics: Specific properties of the effect of executing the con-
structs are expressed as assertions. Thus there may be aspects of the execu-
tions that are ignored.

To get a feeling for their different nature let us see how they express the meaning
of the example program above.

Operational semantics (Chapter 2)

An operational explanation of the meaning of a construct will tell how to execute
it:

e To execute a sequence of statements separated by ‘;” we execute the individ-
ual statements one after the other and from left to right.

e To execute a statement consisting of a variable followed by ‘.=’ and another
variable we determine the value of the second variable and assign it to the
first variable.

We shall record the execution of the example program in a state where x has the
value 5, y the value 7 and z the value 0 by the following “derivation sequence”:

1.1 Semantic description methods 3

(z:=x; x:=y; y:=2, [x—5, y—=T, z—0])

= (x:=y; y:=2, [x—b, y—7, z—5])
= (y:=2z, [x—7, y—=T, z—5])
= [x—7, y—=5, z—5|

In the first step we execute the statement z:=x and the value of z is changed
to 5 whereas those of x and y are unchanged. The remaining program is now
x:=y; y:=z. After the second step the value of x is 7 and we are left with the
program y:=z. The third and final step of the computation will change the value
of y to 5. Therefore the initial values of x and y have been exchanged, using z as
a temporary variable.

This explanation gives an abstraction of how the program is executed on a
machine. It is important to observe that it is indeed an abstraction: we ignore
details like use of registers and addresses for variables. So the operational semantics
is rather independent of machine architectures and implementation strategies.

In Chapter 2 we shall formalize this kind of operational semantics which is often
called structural operational semantics (or small-step semantics). An alternative
operational semantics is called natural semantics (or big-step semantics) and differs
from the structural operational semantics by hiding even more execution details.
In the natural semantics the execution of the example program in the same state
as before will be represented by the following “derivation tree”:

(z:=x, so) = 81 (x:=y, s1) — S2

(z:=x; x:=y, Sg) — $S2 (y:=2, 52) = 83

(z:=x; x:=y; y:=2, So) — S3

where we have used the abbreviations:

so = [x—5, y—T, z2—0]
s1 =[x, y—T, 25
sy = [x=7T, y—T, z2—5]
s3 = [x=7T, y—5, z—5]

This is to be read as follows: The execution of z:=x in the state s, will result in
the state s; and the execution of x:=y in state s; will result in state so. Therefore
the execution of z:=x; x:=y in state sy will give state s,. Furthermore, execution
of y:=z in state sy will give state s3 so in total the execution of the program in
state so will give the resulting state s3. This is expressed by

(z:=x; x:1=y; y:=2, So) — S3

4 1 Introduction

but now we have hidden the above explanation of how it was actually obtained.
In Chapter 3 we shall use the natural semantics as the basis for proving the
correctness of an implementation of a simple programming language.

Denotational semantics (Chapter 4)

In the denotational semantics we concentrate on the effect of executing the pro-
grams and we shall model this by mathematical functions:

b

e The effect of a sequence of statements separated by ;’ is the functional

composition of the effects of the individual statements.

e The effect of a statement consisting of a variable followed by ‘:=" and another
variable is the function that given a state will produce a new state: it is as
the original one except that the value of the first variable of the statement
is equal to that of the second variable.

For the example program we obtain functions written S[z:=x], S[x:=y], and
S[y:=z] for each of the assignment statements and for the overall program we
get the function

S[z:=x; x:=y; y:=z] = S[y:=2z] o S[x:=y] o S[z:=%]

Note that the order of the statements have changed because we use the usual
notation for function composition where (f o g) s means f (g s). If we want to
determine the effect of executing the program on a particular state then we can
apply the function to that state and calculate the resulting state as follows:

S[z:=x; x:=y; y:=2z]([x—5, y—T7, z—0])

= (S]y:=z] o S[x:=y] o S[z:=x])([x—5, y—=T7, z—0])

= S[y:=z](S[x:=y](S[z:=x]([x—5, y—7, z—0])))

= Sly:=z](S[x:=y]([x—5, y—=7, z—5]))

= S[y:=z]([x—=T7, y—7, z—5])

= [x—T7, y—5, z—5]
Note that we are only manipulating mathematical objects; we are not concerned
with executing programs. The difference may seem small for a program with only
assignment and sequencing statements but for programs with more sophisticated
constructs it is substantial. The benefits of the denotational approach are mainly
due to the fact that it abstracts away from how programs are executed. Therefore

it becomes easier to reason about programs as it simply amounts to reasoning
about mathematical objects. However, a prerequisite for doing so is to establish a

1.1 Semantic description methods 5

firm mathematical basis for denotational semantics and this task turns out not to
be entirely trivial.

The denotational approach can easily be adapted to express other sorts of
properties of programs. Some examples are:

e Determine whether all variables are initialized before they are used — if not
a warning may be appropriate.

e Determine whether a certain expression in the program always evaluates to
a constant — if so one can replace the expression by the constant.

e Determine whether all parts of the program are reachable — if not they could
as well be removed or a warning might be appropriate.

In Chapter 5 we develop an example of this.

While we prefer the denotational approach when reasoning about programs we
may prefer an operational approach when implementing the language. It is there-
fore of interest whether a denotational definition is equivalent to an operational
definition and this is studied in Section 4.3.

Axiomatic semantics (Chapter 6)

Often one is interested in partial correctness properties of programs: A program is
partially correct, with respect to a precondition and a postcondition, if whenever
the initial state fulfils the precondition and the program terminates, then the final
state is guaranteed to fulfil the postcondition. For our example program we have
the partial correctness property:

Xx=n A y=m j z:=X; X!=Y; y:=2 =n A X=m
y Y ¥ y

where x=n A y=m is the precondition and y=n A x=m is the postcondition. The
names n and m are used to “remember” the initial values of x and y, respectively.
The state [x—5, y—7, z—0] satisfies the precondition by taking n=5 and m=7 and
when we have proved the partial correctness property we can deduce that if the
program terminates then it will do so in a state where y is 5 and x is 7. However,
the partial correctness property does not ensure that the program will terminate
although this is clearly the case for the example program.

The axiomatic semantics provides a logical system for proving partial correct-
ness properties of individual programs. A proof of the above partial correctness
property may be expressed by the following “proof tree”:

6 1 Introduction

{po}z=x{p} {pyx=y{p}

{ po } z=x; =y { ps } {p2}y=2{ps}

{po} zi=x; xi=y; y:=z { p3 }

where we have used the abbreviations

Po = X=n A y=m
p1 = z=n Ay=m
pe = z=n A xX=m
p3 = y=n /A X=m

We may view the logical system as a specification of only certain aspects of the
semantics. It usually does not capture all aspects for the simple reason that all the
partial correctness properties listed below can be proved using the logical system
but certainly we would not regard the programs as behaving in the same way:

X=n A y=m j Z:=X; X!=y; y:=2 =n A Xx=m
y y: ¥ y
x=n A y=m ; if x=y then skip else (z:=x; x:=Yy; y:=2 =n A x=m
y y p y; ¥ y
x=n A y=m ; while true do ski =n A Xx=m
y P11y

The benefits of the axiomatic approach are that the logical systems provide an easy
way of proving properties of programs — and to a large extent it has been possible
to automate it. Of course this is only worthwhile if the axiomatic semantics is
faithful to the “more general” (denotational or operational) semantics we have in
mind and we shall discuss this in Section 6.3.

The complementary view

It is important to note that these kinds of semantics are not rival approaches, but
are different techniques appropriate for different purposes and — to some extent —
for different programming languages. To stress this, the development will address
the following issues:

e It will develop each of the approaches for a simple language of while-
programs.

e It will illustrate the power and weakness of each of the approaches by ex-
tending the while-language with other programming constructs.

e It will prove the relationship between the approaches for the while-language.

1.2 The example language While 7

o It will give examples of applications of the semantic descriptions in order to
illustrate their merits.

1.2 The example language While

This book illustrates the various forms of semantics on a very simple imperative
programming language called While. As a first step we must specify its syntax.
The syntactic notation we use is based on BNF. First we list the various syntac-
tic categories and give a meta-variable that will be used to range over constructs of
each category. For our language the meta-variables and categories are as follows:

n will range over numerals, Num,

z will range over variables, Var,

a will range over arithmetic expressions, Aexp,
b will range over boolean expressions, Bexp, and

S will range over statements, Stm.

The meta-variables can be primed or subscripted. So, for example, n, n’, ny, no
all stand for numerals.

We assume that the structure of numerals and variables is given elsewhere; for
example numerals might be strings of digits, and variables strings of letters and
digits starting with a letter. The structure of the other constructs is:

¢ == n|z|a+ay]axay|a — as

b == true|false|a;=as| a1 <as|-b|b Aby

S == z:=a|skip|S§;; 82| if b then S; else S,
| while bdo S

Thus, a boolean expression b can only have one of six forms. It is called a basis
element if it is true or false or has the form a; = a9 or a; < ay where a; and ay
are arithmetic expressions. It is called a composite element if it has the form —b
where b is a boolean expression, or the form b; A by where b; and by are boolean
expressions. Similar remarks apply to arithmetic expressions and statements.
The specification above defines the abstract syntax of While in that it simply
says how to build arithmetic expressions, boolean expressions and statements in
the language. One way to think of the abstract syntax is as specifying the parse
trees of the language and it will then be the purpose of the concrete syntax to
provide sufficient information that enable unique parse trees to be constructed.
So given the string of characters:

Z!=X; X!=Y; yi=2

8 1 Introduction

the concrete syntax of the language must be able to resolve which of the two
abstract syntax trees below it is intended to represent:

S S
S : S S : S
z = a S S S S y =a
NN N ‘
X Z
X = a y = a Z = a X = a
| | | |
y A X y

In this book we shall not be concerned with concrete syntax. Whenever we talk
about syntactic entities such as arithmetic expressions, boolean expressions or
statements we will always be talking about the abstract syntax so there is no
ambiguity with respect to the form of the entity. In particular, the two trees
above are both elements of the syntactic category Stm.

It is rather cumbersome to use the graphical representation of abstract syntax
and we shall therefore use a linear notation. So we shall write

z:=x; (x:=y; y:=2)

for the leftmost syntax tree and

(z:=x; x:=y); y:=2

for the rightmost one. For statements one often writes the brackets as begin - - -
end but we shall feel free to use (---) in this book. Similarly, we use brackets
(---) to resolve ambiguities for elements in the other syntactic categories. To cut
down on the number of brackets needed we shall allow to use the familiar relative
binding powers (precedences) of +, x and — etc. and so write 1+x*2 for 1+ (xx2)
but not for (1+x)*2.

Exercise 1.1 The following statement is in While:
y:=1; while —=(x=1) do (y:=y*x; x:=x—1)

It computes the factorial of the initial value bound to x (provided that it is positive)
and the result will be the final value of y. Draw a graphical representation of the
abstract syntax tree. O

1.3 Semantics of expressions 9

Exercise 1.2 Assume that the initial value of the variable x is n and that the
initial value of y is m. Write a statement in While that assigns z the value of n
to the power of m, that is

Nk---%xMn
—_——

m times

Give a linear as well as a graphical representation of the abstract syntax. O

The semantics of While is given by defining so-called semantic functions for
each of the syntactic categories. The idea is that a semantic function takes a
syntactic entity as argument and returns its meaning. The operational, denota-
tional and axiomatic approaches mentioned earlier will be used to specify semantic
functions for the statements of While. For numerals, arithmetic expressions and
boolean expressions the semantic functions are specified once and for all below.

1.3 Semantics of expressions

Before embarking on specifying the semantics of the arithmetic and boolean ex-
pressions of While let us have a brief look at the numerals; this will present the
main ingredients of the approach in a very simple setting. So assume for the mo-
ment that the numerals are in the binary system. Their abstract syntax could
then be specified by:

n:=0|1|[no0|nil

In order to determine the number represented by a numeral we shall define a
function

N: Num — Z

This is called a semantic function as it defines the semantics of the numerals. We
want N to be a total function because we want to determine a unique number
for each numeral of Num. If n € Num then we write N'[n] for the application
of N to n, that is for the corresponding number. In general, the application of
a semantic function to a syntactic entity will be written within the “syntactic”
brackets ‘[’ and ‘]’ rather than the more usual ‘(" and ‘)’. These brackets have no
special meaning but throughout this book we shall enclose syntactic arguments to
semantic functions using the “syntactic” brackets whereas we use ordinary brackets
(or juxtapositioning) in all other cases.

The semantic function N is defined by the following semantic clauses (or equa-
tions):

10 1 Introduction

of =0

] = 1

no0] = 2x%xN[n]
nil] = 2*xN[n]+1

zZzz2Z

[
[
[
[

Here 0 and 1 are numbers, that is elements of Z. Furthermore, * and + are the
usual arithmetic operations on numbers. The above definition is an example of a
compositional definition; this means that for each possible way of constructing a
numeral it tells how the corresponding number is obtained from the meanings of
the subconstructs.

Example 1.3 We can calculate the number A'[101] corresponding to the numeral
101 as follows:

N[101] = 2 x N[10] + 1
=2x(2xN[1]) +1
=2x(2x1)+1
=5

Note that the string 101 is decomposed according to the syntax for numerals. O

So far we have only claimed that the definition of A/ gives rise to a well-defined
total function. We shall now present a formal proof showing that this is indeed
the case.

Fact 1.4 The above equations for N, define a total function N: Num — Z.

Proof: We have a total function N, if for all arguments n € Num
there is exactly one number n € Z such that Nn] = n (*)

Given a numeral n it can have one of four forms: it can be a basis element and
then it is equal to 0 or 1, or it can be a composite element and then it is equal to
n'0 or n'1 for some other numeral n’. So, in order to prove (*) we have to consider
all four possibilities.

The proof will be conducted by induction on the structure of the numeral n.
In the base case we prove (*) for the basis elements of Num, that is for the cases
where n is 0 or 1. In the induction step we consider the composite elements of
Num, that is the cases where n is n’0 or n’1. The induction hypothesis will then
allow us to assume that (*) holds for the immediate constituent of n, that is n'.
We shall then prove that (*) holds for n. It then follows that (*) holds for all

1.3 Semantics of expressions 11

numerals n because any numeral n can be constructed in that way.

The case n = 0: Only one of the semantic clauses defining N can be used and it
gives N[n] = 0. So clearly there is exactly one number n in Z (namely 0) such
that N[n] = n.

The case n = 1 is similar and we omit the details.

The case n = n'0: Inspection of the clauses defining N shows that only one of
the clauses is applicable and we have N[n] = 2 * N[n']. We can now apply
the induction hypothesis to n’ and get that there is exactly one number n’ such
that N'[n'] = n’. But then it is clear that there is exactly one number n (namely
2 x n') such that Nn] = n.

The case n = n'l is similar and we omit the details. O

The general technique that we have applied in the definition of the syntax and
semantics of numerals can be summarized as follows:

Compositional Definitions

1: The syntactic category is specified by an abstract syntax giving the basis
elements and the composite elements. The composite elements have a
unique decomposition into their immediate constituents.

2: The semantics is defined by compositional definitions of a function: There
is a semantic clause for each of the basis elements of the syntactic category
and one for each of the methods for constructing composite elements. The
clauses for composite elements are defined in terms of the semantics of the
immediate constituents of the elements.

The proof technique we have applied is closely connected with the approach to
defining semantic functions. It can be summarized as follows:

Structural Induction

1: Prove that the property holds for all the basis elements of the syntactic
category.

2: Prove that the property holds for all the composite elements of the syn-
tactic category: Assume that the property holds for all the immediate
constituents of the element (this is called the induction hypothesis) and
prove that it also holds for the element itself.

In the remainder of this book we shall assume that numerals are in decimal
notation and have their normal meanings (so for example N[137] = 137 € Z). It

12 1 Introduction

is important to understand, however, that there is a distinction between numerals
(which are syntactic) and numbers (which are semantic), even in decimal notation.

Semantic functions

The meaning of an expression depends on the values bound to the variables that
occur in it. For example, if x is bound to 3 then the arithmetic expression x+1
evaluates to 4 but if x is bound to 2 then the expression evaluates to 3. We shall
therefore introduce the concept of a state: to each variable the state will associate
its current value. We shall represent a state as a function from variables to values,
that is an element of the set

State = Var — Z

Each state s specifies a value, written s z, for each variable z of Var. Thus if
s x = 3 then the value of x+1 in state s is 4.

Actually, this is just one of several representations of the state. Some other
possibilities are to use a table:

X 5
y

Z

or a “list” of the form
[x—5, y—=T7, z—0]

(as in Section 1.1). In all cases we must ensure that exactly one value is associated
with each variable. By requiring a state to be a function this is trivially fulfilled
whereas for the alternative representations above extra restrictions have to be
enforced.

Given an arithmetic expression ¢ and a state s we can determine the value of
the expression. Therefore we shall define the meaning of arithmetic expressions
as a total function A that takes two arguments: the syntactic construct and the
state. The functionality of A is

A: Aexp — (State — Z)

This means that A takes its parameters one at a time. So we may supply A with
its first parameter, say x+1, and study the function A[x+1]. It has functionality
State — Z and only when we supply it with a state (which happens to be a
function but that does not matter) do we obtain the value of the expression x+1.

Assuming the existence of the function N defining the meaning of numerals, we
can define the function .4 by defining its value A[a]s on each arithmetic expression

1.3 Semantics of expressions 13

Aln]s = N[n]

Alz]s = sz

Alar + ao]s = Alai]s + Alaz]s
Alay * as]ls = Alai]s x Alaq]s
Alay — ag]s = Afai]s — Alas]s

Table 1.1: The semantics of arithmetic expressions

a and state s. The definition of A is given in Table 1.1. The clause for n reflects
that the value of n in any state is N'[n]. The value of a variable z in state s is the
value bound to z in s, that is s . The value of the composite expression a;+a-
in s is the sum of the values of a; and a, in s. Similarly, the value of a; * a5 in s
is the product of the values of a; and a, in s, and the value of a1 — a5 in s is the
difference between the values of a; and a5 in s. Note that + , *x and — occurring
on the right of these equations are the usual arithmetic operations, whilst on the
left they are just pieces of syntax; this is analogous to the distinction between
numerals and numbers but we shall not bother to use different symbols.

Example 1.5 Suppose that s x = 3. Then:
Alx+1]s = Ax]s + A[1]s
= (sx)+ N[1]
= 3+1
= 4

Note that here 1 is a numeral (enclosed in the brackets ‘[" and ‘]’) whereas 1 is a
number. O

Example 1.6 Suppose we add the arithmetic expression — a to our language. An
acceptable semantic clause for this construct would be

A[—a]s = 0 — Ala]s

whereas the alternative clause A[— a]s = A[0 — a]s would contradict the com-
positionality requirement. O

Exercise 1.7 Prove that the equations of Table 1.1 define a total function A
in Aexp — (State — Z): First argue that it is sufficient to prove that for
each a € Aexp and each s € State there is exactly one value v € Z such that
Ala]s = v. Next use structural induction on the arithmetic expressions to prove
that this is indeed the case. a

14 1 Introduction

B[true]s — ¢t
B[false]s - ff
tt if AJai]s = Afas]s
B[[al = CZQ]]S = -
ff if Afai]s # Alaz]s
tt if A < A
Bla, < as]s = 1 [a:]s < Alaa]s
fI if AJai]s > Afas]s
tt if Bl[b]]s =ff
B[- b]s _ '
i BLo]s = ot
B[by A bo]s = if B[b1]s and B[bs]s
ffif B[b1]s = ff or B[bs]s = fF

Table 1.2: The semantics of boolean expressions

The values of boolean expressions are truth values so in a similar way we shall
define their meanings by a (total) function from State to T:

B: Bexp — (State — T)

Here T consists of the truth values tt (for true) and ff (for false).

Using .A we can define B by the semantic clauses of Table 1.2. Again we have
the distinction between syntax (e.g. < on the left-hand side) and semantics (e.g.
< on the right-hand side).

Exercise 1.8 Assume that s x = 3 and determine B[—(x = 1)]s. O

Exercise 1.9 Prove that the equations of Table 1.2 define a total function B in
Bexp — (State — T). O

Exercise 1.10 The syntactic category Bexp' is defined as the following extension
of Bexp:

b == true|false|ai =as| a1 # as| a1 <as|a > a
| a1<a2\a1>a2\—|b\bl/\b2|blvb2
| b1:>bg‘b1<:>b2

Give a compositional extension of the semantic function B of Table 1.2.
Two boolean expressions b; and by are equivalent if for all states s,

BI[bl]]S = BI[bQ]IS

Show that for each b’ of Bexp’ there exists a boolean expression b of Bexp such
that b’ and b are equivalent. |

1.4 Properties of the semantics 15

1.4 Properties of the semantics

Later in the book we shall be interested in two kinds of properties for expressions.
One is that their values do not depend on values of variables that do not occur
in them. The other is that if we replace a variable with an expression then we
could as well have made a similar change in the state. We shall formalize these
properties below and prove that they do hold.

Free variables

The free variables of an arithmetic expression «a is defined to be the set of variables
occurring in it. Formally, we may give a compositional definition of the subset
FV(a) of Var:

FV(n) =0

FV(z) = {z}

FV(a; + a2) = FV(ay) UFV(ay)
FV(a; x a;) = FV(a;) UFV(ay)
FV(a; — as) = FV(ar) UFV(as)

As an example FV(x+1) = { x } and FV(x+y*x) = { %, y }. It should be obvious
that only the variables in FV(a) may influence the value of a. This is formally
expressed by:

Lemma 1.11 Let s and s’ be two states satisfying that s z = s’ z for all z in
FV(a). Then Afa]s = Afa]s'.

Proof: We shall give a fairly detailed proof of the lemma using structural induction
on the arithmetic expressions. We shall first consider the basis elements of Aexp:

The case n: From Table 1.1 we have A[n]s = N[n] as well as A[n]s" = N]n].
So A[n]s = A[n]s" and clearly the lemma holds in this case.

The case z: From Table 1.1 we have A[z]s = s = as well as Az]s" = s’ z. From
the assumptions of the lemma we get s = s’ z because z € FV(z) so clearly the
lemma holds in this case.

Next we turn to the composite elements of Aexp:

The case a; + as: From Table 1.1 we have Afa; + as]s = Afai1]s + A[s2]s and
similarly Afa; + az]s’ = Afa1]s" + A[s2]s’. Since g; (for i = 1,2) is an immediate
subexpression of a; + ay and FV(a;) C FV(a; 4+ ay) we can apply the induction
hypothesis (that is the lemma) to a; and get A[a;]s = Afai]s’. It is now easy to

16 1 Introduction

see that the lemma holds for a; + a4 as well.

The cases a; — ao and a; * as follow the same pattern and are omitted. This
completes the proof. O

In a similar way we may define the set FV(b) of free variables in a boolean
expression b by

FV(true) = 0

FV(false) =0

FV(a1 = ag) = FV(al) U FV(GQ)

FV(a1 S ag) = FV(Gl) U FV((ZQ)

FV(-b) = FV(b)
Exercise 1.12 (Essential) Let s and s’ be two states satisfying that s z = s’ z
for all z in FV(b). Prove that B[b]s = B[b]s’. O
Substitutions

We shall later be interested in replacing each occurrence of a variable y in an
arithmetic expression a with another arithmetic expression ag. This is called
substitution and we write a[y+ ag] for the arithmetic expression so obtained. The
formal definition is as follows:

nfy— ao) = n

ag ifzx =y
zly—= o) - { r ifz#y
(a1 + a2)[y—ao] = (ai[y—ao]) + (az[y— aol)
(a1 % ag)[y—a0] = (aily—ao]) * (a2]y—ao))
(a1 — az2)ly—ao] = (aily—ao]) — (az[y—ao])

As an example (x+1)[x—3] = 3+1 and (x+y*x)[x—y—5] = (y—5)+y*(y—5).
We also have a notion of substitution (or updating) for states. We define
s[y—v] to be the state that is as s except that the value bound to y is v, that is

v ifzx=y

(s[y—=v]) = = {

sz ifz#y

The relationship between the two concepts is shown in the following exercise:

1.4 Properties of the semantics 17

Exercise 1.13 (Essential) Prove that Afa[y—ao]]s = A[a](s[y—.A[ao]s]) for
all states s. a

Exercise 1.14 (Essential) Define substitution for boolean expressions: by~ ag]
is to be the boolean expression that is as b except that all occurrences of the
variable y are replaced by the arithmetic expression ay. Prove that your definition
satisfies

B[bly—aolls = B[b](s[y—Alao]s])

for all states s. O

18

1

Introduction

Chapter 2

Operational Semantics

The role of a statement in While is to change the state. For example, if x is bound
to 3 in s and we execute the statement x := x + 1 then we get a new state where x
is bound to 4. So while the semantics of arithmetic and boolean expressions only
inspect the state in order to determine the value of the expression, the semantics
of statements will modify the state as well.

In an operational semantics we are concerned with how to execute programs
and not merely what the results of execution are. More precisely, we are interested
in how the states are modified during the execution of the statement. We shall
consider two different approaches to operational semantics:

e Natural semantics: its purpose is to describe how the overall results of exe-
cutions are obtained.

e Structural operational semantics: its purpose is to describe how the individual
steps of the computations take place.

We shall see that for the language While we can easily specify both kinds of
semantics and that they will be “equivalent” in a sense to be made clear later.
However, we shall also give examples of programming constructs where one of the
approaches is superior to the other.

For both kinds of operational semantics, the meaning of statements will be
specified by a transition system. It will have two types of configurations:

(S, s) representing that the statement S is to be executed from
the state s, and

s representing a terminal (that is final) state.
The terminal configurations will be those of the latter form. The transition relation
will then describe how the execution takes place. The difference between the two

approaches to operational semantics amounts to different ways of specifying the
transition relation.

19

20 2 Operational Semantics

[assps] (z := a, s) = s[z—A[a]s]
[sKipns] (skip, s) — s
: | (S1, 8) = &, (89, ') = &
COMPpg

P (S1;82, 5) — "
pan <817 5) — s .
[if5] . - if B[b]s = tt

(if b then S; else Sy, s) — s
So, sy — &'

[i£f] (52 5) if B[b]s = ff

(if b then S; else Sy, s) — &

(S, s) = &, (while b do S, s') — s"
[while] if B[b]s = tt
(while b do S, s) — s"

[while] (while b do S, s) — s if B[b]s = ff

Table 2.1: Natural semantics for While

2.1 Natural semantics

In a natural semantics we are concerned with the relationship between the initial
and the final state of an execution. Therefore the transition relation will specify
the relationship between the initial state and the final state for each statement.
We shall write a transition as

(S, s) = ¢

Intuitively this means that the execution of § from s will terminate and the re-
sulting state will be s'.

The definition of — is given by the rules of Table 2.1. A rule has the general
form

(S1, s1) = s4, -+, (Sn, sn) — s .
1)
(S, s) — &
where Sq, ---, S, are immediate constituents of S or are statements constructed

from the immediate constituents of S. A rule has a number of premises (written
above the solid line) and one conclusion (written below the solid line). A rule may
also have a number of conditions (written to the right of the solid line) that have
to be fulfilled whenever the rule is applied. Rules with an empty set of premises
are called azioms and the solid line is then omitted.

Intuitively, the axiom [ass,s| says that in a state s, £ := a is executed to yield
a final state s[z+—>A[a]s] which is as s except that z has the value A[a]s. This

2.1 Natural semantics 21

is really an axiom schema because z, a and s are meta-variables standing for
arbitrary variables, arithmetic expressions and states but we shall simply use the
term axiom for this. We obtain an instance of the axiom by selecting particular
variables, arithmetic expressions and states. As an example, if s is the state that
assigns the value O to all variables then

(x := x+1, 59) = So[x—1]

is an instance of [ass,s] because z is instantiated to x, a to x+1, s to sg, and the
value A[x+1]sq is determined to be 1.

Similarly [skip,s] is an axiom and, intuitively, it says that skip does not change
the state. Letting sy be as above we obtain

<Skip, 80> — So

as an instance of the axiom [skipys.

Intuitively, the rule [comp,s] says that to execute S1;5, from state s we must
first execute S, from s. Assuming that this yields a final state s’ we shall then
execute Sy from s’. The premises of the rule are concerned with the two statements
S1 and Sy whereas the conclusion expresses a property of the composite statement
itself. The following is an instance of the rule:

(skip, so) — So, (x 1= x+1, s9) — So[x—1]

(skip; x := x+1, 59) — Sp[x—1]

Here S is instantiated to skip, Ss to x := x + 1, s and s’ are both instantiated
to sp and s” is instantiated to so[x—1]. Similarly

(skip, so) — So[x—5], (x := x+1, so[x—5]) — s

(skip; x := x+1, s9) — So

is an instance of [compys] although it is less interesting because its premises can
never be derived from the axioms and rules of Table 2.1.

For the if-construct we have two rules. The first one, [ifft], says that to execute
if b then S, else S we simply execute S; provided that b evaluates to tt in
the state. The other rule, [ifl], says that if b evaluates to ff then to execute
if b then §; else S, we just execute Sy. Taking sy x = 0 the following is an

instance of the rule [ifft]:

<Skip, 80> — S

if x = 0 then skip else x := x+1, s9) — Sg
p

because B[x = 0]sqg = tt. However, had it been the case that sy x # 0 then it
would not be an instance of the rule [iff] because then B[x = 0]sy would amount
to ff. Furthermore it would not be an instance of the rule [if] because the premise
has the wrong form.

22 2 Operational Semantics

Finally, we have one rule and one axiom expressing how to execute the while-
construct. Intuitively, the meaning of the construct while b do S in the state s
can be explained as follows:

e [f the test b evaluates to true in the state s then we first execute the body of
the loop and then continue with the loop itself from the state so obtained.

e If the test b evaluates to false in the state s then the execution of the loop
terminates.

The rule [whileff] formalizes the first case where b evaluates to tt and it says
that then we have to execute S followed by while b do S again. The axiom
[while] formalizes the second possibility and states that if b evaluates to ff then
we terminate the execution of the while-construct leaving the state unchanged.
Note that the rule [while!!] specifies the meaning of the while-construct in terms
of the meaning of the very same construct so that we do not have a compositional
definition of the semantics of statements.

When we use the axioms and rules to derive a transition (S, s) — s’ we obtain
a derivation tree. The root of the derivation tree is (S, s) — s’ and the leaves
are instances of axioms. The internal nodes are conclusions of instantiated rules
and they have the corresponding premises as their immediate sons. We request
that all the instantiated conditions of axioms and rules must be satisfied. When
displaying a derivation tree it is common to have the root at the bottom rather
than at the top; hence the son is above its father. A derivation tree is called simple
if it is an instance of an axiom, otherwise it is called composite.

Example 2.1 Let us first consider the statement of Chapter 1:

(z:=x; x:=y); y:=2

Let s be the state that maps all variables except x and y to 0 and has so x =5
and so y = 7. Then the following is an example of a derivation tree:

<Z::Xa 30> — 51 <XZZYa 31) — 82

(z:=x; x:=y, So) — $S2 (y:=2, $2) — 83

((z:=x; x:=y); y:=2, So) — $3
where we have used the abbreviations:
s1 = 8o[z—5]
sy = s1[x—>T]

s3 = So[y—5]

2.1 Natural semantics 23

The derivation tree has three leaves denoted (z:=x, so) — $1, (X:=y, $1) — $2,
and (y:=2z, s9) — s3, corresponding to three applications of the axiom [assps]. The
rule [compys] has been applied twice. One instance is

(z:=x%, s9) = s1, (X:=Y, $1) = S92

(z:=x; x:=y, So) — S2

which has been used to combine the leaves (z:=x, so) — $; and (x:=y, 1) — $9
with the internal node labelled (z:=x; x:=y, sg) — $2. The other instance is

(z:=x; x:=y, So) — S2, (y:=2, S2) — S3

((z:=x; x:=y); y:=2, So) — $3

which has been used to combine the internal node (z:=x; x:=y, so) — s, and the
leaf (y:=z, s9) — s3 with the root ((z:=x; x:=y); y:=2, s9) — S3. O

Consider now the problem of constructing a derivation tree for a given state-
ment S and state s. The best way to approach this is to try to construct the
tree from the root upwards. So we will start by finding an axiom or rule with a
conclusion where the left-hand side matches the configuration (S, s). There are
two cases:

o If it is an aziom and if the conditions of the axiom are satisfied then we
can determine the final state and the construction of the derivation tree is
completed.

e If it is a rule then the next step is to try to construct derivation trees for the
premises of the rule. When this has been done, it must be checked that the
conditions of the rule are fulfilled, and only then can we determine the final
state corresponding to (S, s).

Often there will be more than one axiom or rule that matches a given configuration
and then the various possibilities have to be inspected in order to find a derivation
tree. We shall see later that for While there will be at most one derivation tree
for each transition (S, s) — s’ but that this need not hold in extensions of While.

Example 2.2 Consider the factorial statement:
y:=1; while —(x=1) do (y:=y * x; x:=x—1)
and let s be a state with s x = 3. In this example we shall show that
(y:=1; while —(x=1) do (y:=y * x; x:=x—1), §) — s[y—6][x—1] (*)

To do so we shall show that (*) can be obtained from the transition system of
Table 2.1. This is done by constructing a derivation tree with the transition (*)
as its root.

Rather than presenting the complete derivation tree 7" in one go, we shall build
it in an upwards manner. Initially, we only know that the root of T is of the form:

24 2 Operational Semantics

(y:=1; while —(x=1) do (y:=y * x; x:=x—1),) — Sg1
However, the statement
y:=1; while —(x=1) do (y:=y * x; x:=x—1)

is of the form Si; Sy so the only rule that could have been used to produce the
root of T is [comp,s]. Therefore T must have the form:

<y::15 S>_>313 T1

(y:=1; while —(x=1) do (y:=y*x; x:=x—1), 5)— 561
for some state s13 and some derivation tree 7'y which has root
(while —(x=1) do (y:=y*x; x:i=x—1), S13)—S61 (**)

Since (y:=1, s) — s13 has to be an instance of the axiom [ass,s| we get that si3 =
sly—1].

The missing part 77 of T is a derivation tree with root (**). Since the state-
ment of (**) has the form while b do S the derivation tree T, must have been
constructed by applying either the rule [while!!] or the axiom [while]. Since
B[—(x=1)]s13 = tt we see that only the rule [whilet] could have been applied so
T will have the form:

Ty Ty

(while —(x=1) do (y:=y*x; x:=x—1), $13)—>S61
where T is a derivation tree with root
(y:=y*x; x:=x—1, S13)—S32
and T'5 is a derivation tree with root
(while —(x=1) do (y:=y*x; x:=x—1), S32)—>S61 (**%)

for some state s35.
Using that the form of the statement y:=yxx; x:=x—1 is §;55 it is now easy
to see that the derivation tree T'9 is

(y:=y*x, S13)—>S33 (x:=x—1, $33)—>S32

(y:=y*x; x:=x—1, S13)—S32

where s33 = s[y—3] and s32 = s[y—3][x—2]. The leaves of Ty are instances of
[assys] and they are combined using [comp,s|. So now T's is fully constructed.

In a similar way we can construct the derivation tree 7’3 with root (***) and
we get:

2.1 Natural semantics 25

(y:=y*X, S32)—>Sg2 (x:=x—1, Sg2)—>S61

(y:=y*x; x:=x—1, S39)—S¢1 T,

(while —(x=1) do (y:=y*x; x:=x—1), S32)—>S61

where sgo = s[y—6|[x—2], s¢1 = s[y—6][x—1] and T is a derivation tree with
root

(while —(x=1) do (y:=y*x; x:=x—1), Sg1)—S61

Finally, we see that the derivation tree Ty is an instance of the axiom [whilef]

because B[—(x=1)]s¢1 = ff. This completes the construction of the derivation tree
T for (*). O

Exercise 2.3 Consider the statement
z:=0; while y<x do (z:=z+1; x:=x—7)

Construct a derivation tree for this statement when executed in a state where x
has the value 17 and y has the value 5. O

We shall introduce the following terminology: The execution of a statement S
on a state s

o terminates if and only if there is a state s’ such that (S, s) — ', and
e [oops if and only if there is no state s’ such that (S, s) — s'.

We shall say that a statement S always terminates if its execution on a state s
terminates for all choices of s, and always loops if its execution on a state s loops
for all choices of s.

Exercise 2.4 Consider the following statements
e while —(x=1) do (y:=y*x; x:=x—1)
e while 1<x do (y:=y*x; x:=x—1)
e while true do skip

For each statement determine whether or not it always terminates and whether or
not it always loops. Try to argue for your answers using the axioms and rules of
Table 2.1. O

26 2 Operational Semantics

Properties of the semantics

The transition system gives us a way of arguing about statements and their prop-
erties. As an example we may be interested in whether two statements S1 and S5
are semantically equivalent; by this we mean that for all states s and s

(S1, s) — s if and only if (S, s) — &

Lemma 2.5 The statement
while bdo S
is semantically equivalent to

if b then (5; while b do §) else skip.

Proof: The proof is in two stages. We shall first prove that if

(while b do S, s) — " (*)
then

(if b then (S; while b do §) else skip, s) — s (**)

Thus, if the execution of the loop terminates then so does its one-level unfolding.
Later we shall show that if the unfolded loop terminates then so will the loop itself;
the conjunction of these results then prove the lemma.

Because (*) holds we know that we have a derivation tree 7' for it. It can
have one of two forms depending on whether it has been constructed using the
rule [while!!] or the axiom [while]. In the first case the derivation tree T has the
form:

T T,

(while b do S, s) — s"

where T is a derivation tree with root (S, s)—s’ and T is a derivation tree with
root (while b do S, s')—s". Furthermore, B[b]s = tt. Using the derivation trees
T, and Ts as the premises for the rules [comp,s] we can construct the derivation
tree:

T T,

(S; while b do S, s) — s"

Using that B[b]s = tt we can use the rule [if'!] to construct the derivation tree

2.1 Natural semantics 27

T, T,

(S; while b do S, s) — s"

(if b then (S; while b do S) else skip, s) — s”

thereby showing that (**) holds.
Alternatively, the derivation tree T is an instance of [while/l]. Then B[b]s = ff
and we must have that s”=s. So T simply is

(while b do S, s) — s

Using the axiom [skip,s| we get a derivation tree
(skip, s)—s"

and we can now apply the rule [iff] to construct a derivation tree for (**):

(skip, 5) — §"

(if b then (S; while b do S) else skip, s) — s”

This completes the first part of the proof.

For the second stage of the proof we assume that (**) holds and shall prove
that (*) holds. So we have a derivation tree T for (**) and must construct one for
(*). Only two rules could give rise to the derivation tree T for (**), namely [if"
or [iff]. In the first case, B[b]s = tt and we have a derivation tree T; with root

(S; while b do S, s)—s"

The statement has the general form S; S5 and the only rule that could give this
is [compys]. Therefore there are derivation trees Ty and T'3 for

(S, s)—s', and

(while b do S, s')—s"
for some state s'. It is now straightforward to use the rule [whilet] to combine T’y
and T3 to a derivation tree for (*).

In the second case, B[b]s = ff and T is constructed using the rule [iff]. This
means that we have a derivation tree for

(skip, s)—s"

and according to axiom [skipys| it must be the case that s=s”. But then we can
use the axiom [whilel] to construct a derivation tree for (*). This completes the
proof. O

28 2 Operational Semantics

Exercise 2.6 Prove that the two statements S1;(52;53) and (51;52);53 are se-
mantically equivalent. Construct a statement showing that S;55 is not, in general,
semantically equivalent to S9;57. O

Exercise 2.7 Extend the language While with the statement
repeat S until b

and define the relation — for it. (The semantics of the repeat-construct is not
allowed to rely on the existence of a while-construct in the language.) Prove
that repeat S until b and S; if b then skip else (repeat S until b) are
semantically equivalent. a

Exercise 2.8 Another iterative construct is
for z := a1 to ay do S

Extend the language While with this statement and define the relation — for it.
Evaluate the statement

y:=1; for z:=1 to x do (y:=y * x; x:=x—1)

from a state where x has the value 5. Hint: You may need to assume that you
have an “inverse” to NV, so that there is a numeral for each number that may arise
during the computation. (The semantics of the for-construct is not allowed to
rely on the existence of a while-construct in the language.) a

In the above proof we used Table 2.1 to inspect the structure of the derivation
tree for a certain transition known to hold. In the proof of the next result we shall
combine this with an induction on the shape of the derivation tree. The idea can
be summarized as follows:

Induction on the Shape of Derivation Trees

1: Prove that the property holds for all the simple derivation trees by showing
that it holds for the azioms of the transition system.

2: Prove that the property holds for all composite derivation trees: For each
rule assume that the property holds for its premises (this is called the
induction hypothesis) and prove that it also holds for the conclusion of the
rule provided that the conditions of the rule are satisfied.

To formulate the theorem we shall say that the semantics of Table 2.1 is determin-
istic if for all choices of S, s, s’ and s” we have that

(S, s) = s and (S, s) — " imply &' = 5"

2.1 Natural semantics 29

This means that for every statement S and initial state s we can uniquely determine
a final state s’ if (and only if) the execution of S terminates.

Theorem 2.9 The natural semantics of Table 2.1 is deterministic.

Proof: We assume that (S, s)—s’ and shall prove that
if (S, s)—s" then s’ = s".

We shall proceed by induction on the shape of the derivation tree for (S, s)—s'.

The case [assys|: Then S is z:=a and s is s[z—.A[a]s]. The only axiom or rule
that could be used to give (z:=a, s)—s" is [ass,s] so it follows that s” must be
slz—Afa]s] and thereby s’ = s".

The case [skip,s]: Analogous.

The case [comp,s]: Assume that
(81;52, s)—s'

holds because
(S1, s)—so and (S5, so)—s'

for some sg. The only rule that could be applied to give (51;55, s)—s" is [compys]
so there is a state s; such that

(81, s)—s1 and (S5, s1)—s"

The induction hypothesis can be applied to the premise (S;, s)—so and from
(S1, s)—s1 we get so = s1. Similarly, the induction hypothesis can be applied to
the premise (S5, so)—s’ and from (S5, so)—s"” we get s’ = s" as required.

The case [ifff]: Assume that

(if b then S; else Sy, s) — &'
holds because

B[b]s = tt and (S, s)—s

From B[b]s = tt we get that the only rule that could be applied to give the
alternative (if b then S; else So, s) — s" is [if]. So it must be the case that

(S, s) — s"

30 2 Operational Semantics

But then the induction hypothesis can be applied to the premise (S, s) — s’ and
from (S, s) — s" we get s’ = s".

The case [if]: Analogous.

The case [whileft]: Assume that
(while bdo S, s) — &
because
B[b]s = tt, (S, s)—so and (while b do S, so)—s’

The only rule that could be applied to give (while b do S, s) — s” is [while!t
because B[b]s = tt and this means that

(S, s)—sy and (while b do S, s1) — s

must hold for some s;. Again the induction hypothesis can be applied to the
premise (S, s)—so and from (S, s)—s; we get so = s;. Thus we have

(while b do S, sg)—s’ and (while b do S, sg)—s”

Since (while b do S, sg)—s’ is a premise of (the instance of) [whileft] we can
apply the induction hypothesis to it. From (while b do S, sg)—s" we therefore
get ' = s” as required.

The case [whilell]: Straightforward. O

Exercise 2.10 * Prove that repeat S until b (as defined in Exercise 2.7) is
semantically equivalent to S; while —b do S. Argue that this means that the
extended semantics is deterministic. O

It is worth observing that we could not prove Theorem 2.9 using structural
induction on the statement S. The reason is that the rule [while!] defines the
semantics of while b do S in terms of itself. Structural induction works fine when
the semantics is defined compositionally (as e.g. A and B in Chapter 1). But the
natural semantics of Table 2.1 is not defined compositionally because of the rule
[whilel].

Basically, induction on the shape of derivation trees is a kind of structural
induction on the derivation trees: In the base case we show that the property
holds for the simple derivation trees. In the induction step we assume that the
property holds for the immediate constituents of a derivation tree and show that
it also holds for the composite derivation tree.

2.1 Natural semantics 31

The semantic function S,

The meaning of statements can now be summarized as a (partial) function from
State to State. We define

Sps: Stm — (State — State)

and this means that for every statement S we have a partial function
Sus[S] € State — State.

It is given by

s' if (S, s) — ¢
undef otherwise

1515 = {

Note that S, is a well-defined partial function because of Theorem 2.9. The need
for partiality is demonstrated by the statement while true do skip that always
loops (see Exercise 2.4); we then have

Sns[while true do skip] s = undef

for all states s.

Exercise 2.11 The semantics of arithmetic expressions is given by the function
A. We can also use an operational approach and define a natural semantics for
the arithmetic expressions. It will have two kinds of configurations:

(a, s) denoting that a has to be evaluated in state s, and

z denoting the final value (an element of Z).
The transition relation — pexp has the form
(a, 8) = Aexp 2

where the idea is that a evaluates to z in state s. Some example axioms and rules
are

(n, $) —aexp N[1]
(T, 8) D Aexp $ T

<0,1, 3) _>Aexp 21, <a2; S> _>Aexp Z9
where z = 27 + 29

(a1 + ag, 8) = Aexp #

Complete the specification of the transition system. Use structural induction on
Aexp to prove that the meaning of a defined by this relation is the same as that
defined by A. a

32 2 Operational Semantics

Exercise 2.12 In a similar way we can specify a natural semantics for the boolean
expressions. The transitions will have the form

<b, S> _)Bexp t

where ¢ € T. Specify the transition system and prove that the meaning of 6 defined
in this way is the same as that defined by B. O

Exercise 2.13 Determine whether or not semantic equivalence of §; and S,
amounts to Sys[S1] = Sus[S2]-]

2.2 Structural operational semantics

In structural operational semantics the emphasis is on the individual steps of the
execution, that is the execution of assignments and tests. The transition relation
has the form

(S, 8) =7

where 7 either is of the form (S’, s’) or of the form s’. The transition expresses
the first step of the execution of S from state s. There are two possible outcomes:

e If v is of the form (S', s’) then the execution of S from s is not completed and
the remaining computation is expressed by the intermediate configuration

(S', s".

o If v is of the form s’ then the execution of S from s has terminated and the
final state is s'.

We shall say that (S, s) is stuck if there is no such that (S, s) = 7.

The definition of = is given by the axioms and rules of Table 2.2 and the
general form of these are as in the previous section. Axioms [assss| and [skipses]
have not changed at all because the assignment and skip statements are fully
executed in one step.

The rules [compl] and [comp2] express that to execute S;;55 in state s we
first execute S; one step from s. Then there are two possible outcomes:

e If the execution of S; has not been completed we have to complete it before
embarking on the execution of .

e If the execution of S§; has been completed we can start on the execution of
Ss.

2.2 Structural operational semantics 33

[asSsos] (z := a, s) = s[z—A[a]s]
[skipsos] (skip, s) = s
<SI: S> = <Slla Sl>
[compy]
<Sl;52: 8) = <Sllﬂ52: SI>
(81, s) = ¢
[compg,]
(S1552, s) = (82, ')
[if¥] (if b then Sy else Sy, 5) = (51, s) if B[b]s = tt
[ifE] (if b then S| else Sy, s) = (89, s) if B[b]s = ff
[whilegs] (while b do S, s) =
(if b then (5; while b do §) else skip, s)

Table 2.2: Structural operational semantics for While

The first case is captured by the rule [compg.]: If the result of executing the first
step of (S, s) is an intermediate configuration (S}, s’) then the next configuration
is (S;S52, s') showing that we have to complete the execution of S; before we can
start on Ss. The second case above is captured by the rule [comp2]: If the result
of executing S; from s is a final state s’ then the next configuration is (S9, s'), so
that we can now start on S5.

From the axioms [if'] and [iff] we see that the first step in executing a
conditional is to perform the test and to select the appropriate branch. Finally, the
axiom [whileg.s] shows that the first step in the execution of the while-construct is
to unfold it one level, that is to rewrite it as a conditional. The test will therefore
be performed in the second step of the execution (where one of the axioms for the
if-construct is applied). We shall see an example of this shortly.

A derivation sequence of a statement S starting in state s is either
e a finite sequence

Yo, Y1y Y25, "7y Yk

of configurations satisfying vy = (59, s), i = 7i11 for 0<i<k, k>0, and where
vk is either a terminal configuration or a stuck configuration, or it is

e an infinite sequence

Yo, Y1y Y2, 7

34 2 Operational Semantics

of configurations satisfying vo = (5, s) and 7; = ~;;1 for 0<i

We shall write o =' ; to indicate that there are i steps in the execution from
Yo to 7; and we write o =* 7; to indicate that there is a finite number of steps.
Note that vy =' 7; and 79 =* ~; need not be derivation sequences: they will be
so if and only if v; is either a terminal configuration or a stuck configuration.

Example 2.14 Consider the statement

(z=x;x:=y);y:=2z
of Chapter 1 and let sy be the state that maps all variables except x and y to O
and that has sp x = 5 and sy y = 7. We then have the derivation sequence:
(z:=xx:=7y);y:= 2, 5)
= (x 1= y; y := 2, So[z—5])
= (y := z, (s0[z—5])[x—7])
= ((s0[z—5])[x—T7])[y—>5]

Corresponding to each of these steps we have derivation trees explaining why they
take place. For the first step

((z:=x;x:=7y);y:=12, 8) = (X:=y; 7 := 2, So[z—5])
the derivation tree is

(z == x, s9) = So[z—D]

(z:=xx:=1y, s9) = (x:=y, so[z—5])

((z:=x;x:=7y);y:=12, 8) = (X:=y; 7 := 2, S[z—5])

and it has been constructed from the axiom [assss] and the rules [compg | and
[comp2]. The derivation tree for the second step is constructed in a similar way
using only [assss] and [comp2 | and for the third step it simply is an instance of
[aSSs0s) - O

Example 2.15 Assume that s x = 3. The first step of execution from the con-
figuration

(y:=1; while —(x=1) do (y:=y * x; x:=x—1),)
will give the configuration

(while —(x=1) do (y:=y % x; x:=x—1), s[y—1])

2.2 Structural operational semantics 35

This is achieved using the axiom [assgs| and the rule [comp?] as shown by the
derivation tree:

(y:=1, s) = s[y—1]

(y:=1; while —(x=1) do (y:=y*x; x:=x—1), §) =
(while =(x=1) do (y:=y*x; x:=x—1), s[y—>1])

The next step of the execution will rewrite the loop as a conditional using the
axiom [whileg,s| so we get the configuration

(if —(x=1) then ((y:=y*x; x:=x—1);
while —(x=1) do (y:=y*x; x:=x—1))
else skip, s[y—1])

The following step will perform the test and yields (according to [if*]) the con-
figuration

((y:=y*x; x:=x—1); while =(x=1) do (y:=y * x; x:=x—1), s[y—~1])
We can then use [assgs], [compZ2] and [comp.] to obtain the configuration
(x:=x—1; while —(x=1) do (y:=y * x; x:=x—1), s[y—3])
as is verified by the derivation tree:

(y:=y*x, s[y—1])=s[y—3]

(y:=y*x; xi=x—1, s[y—1])=(x:=x—1, s[y—3])

{(y:=y*x; x:=x—1); while —=(x=1) do (y:=y*x; x:=x—1), s[y—~1]) =
(x:=x—1; while —(x=1) do (y:=y * x; x:=x—1), s[y—3])
Using [asssos] and [comp?2] the next configuration will then be
(while —(x=1) do (y:=y % x; x:=x—1), s[y—3][x—2])
Continuing in this way we eventually reach the final state s[y—6][x—1]. O
Exercise 2.16 Construct a derivation sequence for the statement
z:=0; while y<x do (z:=z+1; x:=x—7)

when executed in a state where x has the value 17 and y has the value 5. Determine
a state s such that the derivation sequence obtained for the above statement and
s is infinite. O

36 2 Operational Semantics

Given a statement S in the language While and a state s it is always possible
to find at least one derivation sequence that starts in the configuration (S, s):
simply apply axioms and rules forever or until a terminal or stuck configuration is
reached. Inspection of Table 2.2 shows that there are no stuck configurations in
While and Exercise 2.22 below will show that there is in fact only one derivation
sequence that starts with (S, s). However, some of the constructs considered in
Section 2.4 that extend While will have configurations that are stuck or more
than one derivation sequence that starts in a given configuration.

In analogy with the terminology of the previous section we shall say that the
execution of a statement S on a state s

e terminates if and only if there is a finite derivation sequence starting with
(S, sy, and

e [oops if and only if there is an infinite derivation sequence starting with

(S, s).

We shall say that the execution of S on s terminates successfully if (S, s) =* s
for some state s’; in While an execution terminates successfully if and only if it
terminates because there are no stuck configurations. Finally, we shall say that a
statement S always terminates if it terminates on all states, and always loops if it
loops on all states.

Exercise 2.17 Extend While with the construct repeat S until b and spec-
ify the structural operational semantics for it. (The semantics for the repeat-
construct is not allowed to rely on the existence of a while-construct.) a

Exercise 2.18 Extend While with the construct for z := a; to ay, do S and
specify the structural operational semantics for it. Hint: You may need to assume
that you have an “inverse” to N, so that there is a numeral for each number that
may arise during the computation. (The semantics for the for-construct is not
allowed to rely on the existence of a while-construct.) a

Properties of the semantics

For structural operational semantics it is often useful to conduct proofs by in-
duction on the length of the derivation sequences. The proof technique may be
summarized as follows:

2.2 Structural operational semantics 37

Induction on the Length of Derivation Sequences

1: Prove that the property holds for all derivation sequences of length 0.

2: Prove that the property holds for all other derivation sequences: Assume
that the property holds for all derivation sequences of length at most k
(this is called the induction hypothesis) and show that it holds for deriva-
tion sequences of length k+1.

The induction step of a proof following this principle will often be done by inspect-
ing either

e the structure of the syntactic element, or
e the derivation tree validating the first transition of the derivation sequence.

Note that the proof technique is a simple application of mathematical induction.

To illustrate the use of the proof technique we shall prove the following lemma
(to be used in the next section). Intuitively, the lemma expresses that the execution
of a composite construct S1;59 can be split into two parts, one corresponding to
S1 and the other corresponding to S.

Lemma 2.19 If (§,;9,, s) = s” then there exists a state s’ and natural numbers
k; and ky such that (S, s) =5 s" and (S, s') =2 s” where k = k;+ky.

Proof: The proof is by induction on the number k, that is by induction on the
length of the derivation sequence (S1;S59, s) =¥ s".

If k = 0 then the result holds vacuously.

For the induction step we assume that the lemma holds for k < ky and we shall
prove it for ko+1. So assume that

(81;89, 8) =kotl g
This means that the derivation sequence can be written as
<Sl;SQ, $> =7 =ko g

for some configuration v. Now one of two cases applies depending on which of the
two rules [compg] and [comp2] was used to obtain (S1;S9, s) = 7.
In the first case where [compl] is used we have

(S1;82, 8) = (S1;82, §")

because

38 2 Operational Semantics

<Sla 8) = < Ila S,>
We therefore have
(81;85, s') =ko 4"

and the induction hypothesis can be applied to this derivation sequence because
it is shorter than the one we started with. This means that there is a state sq and
natural numbers k; and kg such that

(8", 8"y =k 55 and (Sy, sq) =2 5"
where k;+ko=k,. Using that (S, s) = (S4, s') and (S}, s’} =¥ s, we get
<Sl, 8> :>k1+1 So

We have already seen that (So, so) =2 5" and since (k;+1)+ky = ko+1 we have
proved the required result.

The second possibility is that [comp?2] has been used to obtain the derivation
(S1;S2, s) = . Then we have

<Sl, S> =
and v is (S9, s') so that
(S, s’y =ko "

The result now follows by choosing k;=1 and ky=kj. O

Exercise 2.20 Suppose that (S1;55, s)=*(S5, s'). Show that it is not necessarily
the case that (S, s)="*s'. O

Exercise 2.21 (Essential) Prove that
if (S1, s) =* s’ then ($1;55, s) =* (93, ')
that is the execution of S, is not influenced by the statement following it. a

In the previous section we defined a notion of determinism based on the natural
semantics. For the structural operational semantics we define the similar notion
as follows. The semantics of Table 2.2 is deterministic if for all choices of S, s, v
and +' we have that

(S, s) =~ and (S, s) = 7 imply v =7

2.2 Structural operational semantics 39

Exercise 2.22 (Essential) Show that the structural operational semantics of
Table 2.2 is deterministic. Deduce that there is exactly one derivation sequence
starting in a configuration (S, s). Argue that a statement S of While cannot both
terminate and loop on a state s and hence it cannot both be always terminating
and always looping. O

In the previous section we defined a notion of two statements S; and S5 being
semantically equivalent. The similar notion can be defined based on the structural
operational semantics: S; and S, are semantically equivalent if for all states s

e (51, s) =" v if and only if (Ss, s) =* 7, whenever 7 is a configuration that
is either stuck or terminal, and

e there is an infinite derivation sequence starting in (S, s) if and only if there
is one starting in (So, s).

Note that in the first case the length of the two derivation sequences may be
different.

Exercise 2.23 Show that the following statements of While are semantically
equivalent in the above sense:

e S;skip and S
e while b do S and if b then (S; while b do §) else skip

° 51;(52;53) and (51;52);53

You may use the result of Exercise 2.22. Discuss to what extent the notion of
semantic equivalence introduced above is the same as that defined from the natural
semantics. O

Exercise 2.24 Prove that repeat S until b (as defined in Exercise 2.17) is se-
mantically equivalent to S; while — b do §. O

The semantic function S

As in the previous section the meaning of statements can be summarized by a
(partial) function from State to State:

Ssos: Stm — (State — State)
It is given by

Ssos[S]s = {

The well-definedness of the definition follows from Exercise 2.22.

s’ if (S, s) =* ¢

undef otherwise

Exercise 2.25 Determine whether or not semantic equivalence of S; and S,
amounts to Sgos[S1] = Ssos[S2]- O

40 2 Operational Semantics

2.3 An equivalence result

We have given two definitions of the semantics of While and we shall now address
the question of their equivalence.

Theorem 2.26 For every statement S of While we have S,5[S] = Ssos[S]-

This result expresses two properties:

e If the execution of . from some state terminates in one of the semantics then
it also terminates in the other and the resulting states will be equal.

e If the execution of S from some state loops in one of the semantics then it
will also loop in the other.

It should be fairly obvious that the first property follows from the theorem because
there are no stuck configurations in the structural operational semantics of While.
For the other property suppose that the execution of S on state s loops in one
of the semantics. If it terminates in the other semantics we have a contradiction
with the first property because both semantics are deterministic (Theorem 2.9 and
Exercise 2.22). Hence S will have to loop on state s also in the other semantics.

The theorem is proved in two stages as expressed by Lemma 2.27 and Lemma
2.28 below. We shall first prove:

Lemma 2.27 For every statement S of While and states s and s’ we have
(S, s) — s implies (5, s) =* s'.

So if the execution of S from s terminates in the natural semantics then it will
terminate in the same state in the structural operational semantics.

Proof: The proof proceeds by induction on the shape of the derivation tree for
(S, s) = .

The case [assps|: We assume that
(z :== a, s) = s[z—A[a]s]

From [assss] we get the required
(z :== a, s) = s[z—A[a]s]

The case [skip,s]: Analogous.

The case [comp,s|: Assume that

2.3 An equivalence result 41

(81;59, s) — §"
because
(S1, sy = s and (Sy, s') — §"”

The induction hypothesis can be applied to both of the premises (S, s) — s’ and
(Sq, s’y — s" and gives

(S1, s) =* s" and (S, s') =* 5"
From Exercise 2.21 we get
(S1;899, s) =* (Sa, s)
and thereby (51;55, s) =* s".
The case [if!’]: Assume that
(if b then S; else So, 5) — &'
because
B[b]s = tt and (51, s) — &
Since B[b]s = tt we get
(if b then S; else Sy, s) = (51, s) =* ¢

where the first relationship comes from [iff’] and the second from the induction

hypothesis applied to the premise (S;, s) — s'.
The case [iff]: Analogous.

The case [while!t]: Assume that
(while b do S, s) — s"
because
B[b]s = tt, (S, s) — s" and (while b do S, s') — s"

The induction hypothesis can be applied to both of the premises (S, s) — s’ and
(while b do S, s') — s” and gives

(S, s) =* s and (while b do 3, s') =* §"
Using Exercise 2.21 we get
(S; while b do S, s) =* "

Using [whilegys] and [iff] (with B[b]s = tt) we get the first two steps of

42 2 Operational Semantics

(while b do S, s)
= (if b then (S; while b do §) else skip, s)
= (S; while b do S, s)
:>* 3”
and we have already argued for the last part.

The case [whilell]: Straightforward. O

This completes the proof of Lemma 2.27. The second part of the theorem
follows from:

Lemma 2.28 For every statement S of While, states s and s’ and natural number
k we have that

(S, s) =k s implies (S, s) — s’

So if the execution of S from s terminates in the structural operational semantics
then it will terminate in the same state in the natural semantics.

Proof: The proof proceeds by induction on the length of the derivation sequence
(S, s) =¥ &', that is by induction on k.

If k=0 then the result holds vacuously.

To prove the induction step we assume that the lemma holds for k < kg and
we shall then prove that it holds for ko+1. We proceed by cases on how the first
step of (S, s) =X*! s is obtained, that is by inspecting the derivation tree for
the first step of computation in the structural operational semantics.

The case [assg;): Straightforward (and ko = 0).

The case [skipses|: Straightforward (and ko = 0).

2

2s]: In both cases we assume that

The cases [comp,. | and [comp
<SI;S2, 8> :>k0+1 s

We can now apply Lemma 2.19 and get that there exists a state s’ and natural
numbers k; and ky such that

(81, 8) =¥ 5" and (S, s') =k 5"

where k;+ko=Kko+1. The induction hypothesis can now be applied to each of these
derivation sequences because k; < ky and ko < ky. So we get

(S1, s) = s and (S, s') — 5"

2.3 An equivalence result 43

Using [compys] we now get the required (S1;59, s) — s”.
The case [if']: Assume that B[b]s = tt and that

S0Os

(if b then S else S, s) = (51, s) =k &

The induction hypothesis can be applied to the derivation sequence (S, s) =% s’
and gives

(S1, s) = ¢

The result now follows using [if%].

The case [iff |: Analogous.

The case [whileg,]: We have

(while b do S, s)
= (if b then (S; while b do §) else skip, s)

:>k0 S”

The induction hypothesis can be applied to the k, last steps of the derivation
sequence and gives

(if b then (S; while b do S) else skip, s) — s”

and from Lemma 2.5 we get the required

(while bdo S, s) — s" O

Proof of Theorem 2.26: For an arbitrary statement S and state s it follows
from Lemmas 2.27 and 2.28 that if Sps[S]s = s’ then Sys[S]s = s’ and vice versa.
This suffices for showing that the functions S,s[S] and Sgos[S] must be equal: if
one is defined on a state s then so is the other, and therefore, if one is not defined
on a state s then neither is the other. O

Exercise 2.29 Consider the extension of the language While with the statement
repeat S until b. The natural semantics of the construct was considered in
Exercise 2.7 and the structural operational semantics in Exercise 2.17. Modify the
proof of Theorem 2.26 so that the theorem applies to the extended language. O

Exercise 2.30 Consider the extension of the language While with the statement
for £ := a; to ay do S. The natural semantics of the construct was considered in
Exercise 2.8 and the structural operational semantics in Exercise 2.18. Modify the
proof of Theorem 2.26 so that the theorem applies to the extended language. O

44 2 Operational Semantics

The proof technique employed in the proof of Theorem 2.26 may be summa-
rized as follows:

Proof Summary for While:

Equivalence of two Operational Semantics

1: Prove by induction on the shape of derivation trees that for each derivation
tree in the natural semantics there is a corresponding finite derivation
sequence in the structural operational semantics.

2: Prove by induction on the length of derivation sequences that for each
finite derivation sequence in the structural operational semantics there is
a corresponding derivation tree in the natural semantics.

When proving the equivalence of two operational semantics for a language with
additional programming constructs one may need to amend the above proof tech-
nique. One reason is that the equivalence result may have to be expressed dif-
ferently from that of Theorem 2.26 (as will be the case if the extended language
is non-deterministic). Also one might want to consider only some of the finite
derivation sequences, for example those ending in a terminal configuration.

2.4 Extensions of While

In order to illustrate the power and weakness of the two approaches to operational
semantics we shall consider various extensions of the language While. For each
extension we shall show how to modify the operational semantics.

Abortion

We first extend While with the simple statement abort. The idea is that abort
stops the execution of the complete program. This means that abort behaves
differently from while true do skip in that it causes the execution to stop rather
than loop. Also abort behaves differently from skip because a statement following
abort will never be executed whereas one following skip certainly will.

Formally, the new syntax of statements is given by:

S == z:=ua|skip|S;;Sy|if b then S; else S,
| while bdo S | abort

We shall not repeat the definitions of the sets of configurations but tacitly assume
that they are modified so as to correspond to the extended syntax. The task that
remains, therefore, is to define the new transition relations — and =-.

2.4 Extensions of While 45

The fact that abort stops the execution of the program is modelled by ensuring
that the configurations of the form (abort, s) are stuck. Therefore the natural
semantics of the extended language is still defined by the transition relation —
of Table 2.1. So although the language and thereby the set of configurations have
been extended we do not modify the definition of the transition relation. Similarly,
the structural operational semantics of the extended language is still defined by
Table 2.2.

From the structural operational semantics point of view it is clear now that
abort and skip cannot be semantically equivalent. This is because

(skip, 5) = s
is the only derivation sequence for skip starting in s and
(abort, s)

is the only derivation sequence for abort starting in s. Similarly, abort cannot be
semantically equivalent to while true do skip because

(while true do skip, s)
= (if true then (skip; while true do skip) else skip, s)
= (skip; while true do skip, s)
= (while true do skip, s)

is an infinite derivation sequence for while true do skip whereas abort has none.
Thus we shall claim that the structural operational semantics captures the informal
explanation given earlier.

From the natural semantics point of view it is also clear that skip and abort
cannot be semantically equivalent. However, it turns out that while true do skip
and abort are semantically equivalent! The reason is that in the natural semantics
we are only concerned with executions that terminate properly. So if we do not
have a derivation tree for (S, s} — s’ then we cannot tell whether it is because we
entered a stuck configuration or a looping execution. We can summarize this as
follows:

Natural Semantics versus Structural Operational Semantics

e In a natural semantics we cannot distinguish between looping and abnormal
termination.

e In a structural operational semantics looping is reflected by infinite deriva-
tion sequences and abnormal termination by finite derivation sequences end-
ing in a stuck configuration.

46 2 Ope