Code generation for Embedded
Systems

Henri-Pierre.Charles@cea.fr
Henri-Pierre Charles

CEA/DRT/LIST/LIALP / Grenoble
26 November 2014

www.cea.fr

leti & List

Introduction Plan / Deal

Deal ?

m Presentation (in froglish)

m 3 hours long
m 1 pause

= Questions (during the talk, after by mail)
m You'll have my slides

m Evaluation

m Multiple choices questions (positive & negative counting
m Due in X weeks (X = 2)

OK ? Questions ?

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 2

g

Code Generation for Embedded Systems

I'll present in this talk different ways to generate binary code for
embedded systems : How to use a classical static compiler such as gcc or
LLLVM and many other possibilities, dynamically (during the code
execution) or not using Just In Time compiler (JIT) in differents contexts.
We will also see how execute code and use tools in order to mesure
metrics needed on modern platforms : speed, memory footprint, energy.
The talk will begin by presenting processors used in embedded systems
and present notions and vocabulary used in the talk.

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 3

Introduction Questions

Questions Unfinished list of anwsers
= How many processors you In your :
have ?

» Laptop (easy)
m Now, in the class?

m In your room?

v

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 4

Introduction Questions

Questions Unfinished list of anwsers
= How many processors you In your :
have ?

» Laptop (easy)
m Now, in the class?

= In your room? = Phone (How many

processors 7)

v
Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 4
Teserved

Introduction Questions

Questions Unfinished list of anwsers
= How many processors you In your :
have ?

» Laptop (easy)
m Now, in the class?

= In your room? = Phone (How many

processors 7)
m DSL box

v
Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 4
Teserved

Introduction Questions

Questions Unfinished list of anwsers
= How many processors you In your :
have ?

Laptop (easy)
m Now, in the class?

= In your room? = Phone (How many

processors 7)
DSL box
Car / bike / bus / tram

v

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 4
Teserved

Introduction Questions

Questions Unfinished list of anwsers
= How many processors you In your :
have ?

Laptop (easy)

m Now, in the class?

= In your room? = Phone (How many

processors 7)

DSL box

Car / bike / bus / tram
Wall clock

v
Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 4

ghts reserved
B R i R R R R R A L, A ———RRRRRRREEEEESImI—S————b€bwb————E——E>E—EPEEE———————

Introduction Questions

Questions Unfinished list of anwsers
= How many processors you In your :
have? » Laptop (easy)
m Now, in the class?
e T—" » Phone (How many
processors 7)

m DSL box
» Car / bike / bus / tram
m Wall clock
m Watch

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 4

ghts reserved
B R i R R R R R A L, A ———RRRRRRREEEEESImI—S————b€bwb————E——E>E—EPEEE———————

Introduction Questions
e o

Questions Unfinished list of anwsers
= How many processors you In your :
have? » Laptop (easy)
m Now, in the class?
e T—" » Phone (How many
processors 7)
m DSL box
» Car / bike / bus / tram
m Wall clock
m Watch
m USB key (yes USB disk
stick)

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 4
e

CEA. All rignts reserved

Introduction Questions
e o

Questions Unfinished list of anwsers
= How many processors you In your :
have ?

» Laptop (easy)
m Now, in the class?

= In your room? = Phone (How many

processors 7)

DSL box

Car / bike / bus / tram
Wall clock

Watch

USB key (yes USB disk
stick)

m /.

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 4
= erved

v

Compilation More interesting
u Parsing m Dynamic compilation
n Program-analysis ® Run-time optimizations

m Data dependant optim.

m Compiler or program m Hardware optimization

optimization u Energy
[

e

m Code generation

W :Compiler construction

Interesting arch.
Architectures = ARM / MIPS / ucontrol
n X86) = GPU / MALI /

m ./

v
Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 5

http://en.wikipedia.org/wiki/Compiler_construction

Texas Msp430

Building block for embedded system Arch Overview

Texas Microcontroller Illustration
Characteristics :

. 8 to 24 MHZ : l:ﬂlmlﬂ\lﬂ
m 512 to 1024 bytes of ram

m Bare metal To be defined

= 1.75% to 2.45%

m Cross compiler To be defined

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 6

http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/msp/overview.page

Introduction Raspberry
e o

Building block for geek Web site

Raspberry Illustration
Characteristics :
» ARM1176JZF-S (ARMv6)
700MHz
m RAM : 256 Mo
» 2 video out; audio in/out
m SDCARD mem; 1 Port
USB 2.0;
= 300 mA
m Full OS : linux, BSD, ...
=209) ”

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 7

http://www.raspberrypi.org/

ARM big.LITTLE
e

ARM : “more than 30 billion
big processors sold with more than
16M sold every day ARM"
(Nov 2013) http:
//www.arm.com/products/
processors/index.php

Writeback

= 4 big processors + 4 little
J m Same ISA, To be defined
LITTLE = (even for vector operation)

= Low latencie switch

big.LITTLE notion

Integer Writeback

Lowest Decode Issue Floating-Point / NEON

Operatl Dual Issue
n

Queue

Figure 1 Cortex-A7 Pipeline

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 8
< Tght ed

g

http://www.arm.com/products/processors/index.php
http://www.arm.com/products/processors/index.php
http://www.arm.com/products/processors/index.php
http://www.arm.com/products/processors/technologies/biglittleprocessing.php

Battery
Saver
core
e e

Battery
Saver
core
e il

Battery
Saver

v

Core 1

L

Core 1

Core 2

-4

Core 2

Core 3

Background tasks,
audio, video, Email
syncs, social media

syncs, etc.

Single core
performance for Email,
2D games, basic

browsing, maps, etc.

Dual core performance
for Flash enabled
browsing, multitasking,
video chat, etc.

Quad core performance
for console class
gaming, faster browsing,
media processing

System level
selection

Same ISA
Usage
Scenarios
+ Nvidia
GPU

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 9

= STM32
microcontroller /
ARM Cortex-M

RAM 255 KB max
Flash 2048 KB max

Sensors
(temperature, etc)

m IPV6 connectiviy

Power from light (even
light bulbs)

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 10
< hts reserved

3nts reserve

Introduction MPSoC Magali

Research MPSoC dedicated to 3G LTE Advanced To be defined

o
CC NOCIF s cuputport
v

oc Modulator SME UERiZD cc OFDM oc OFDM
(MMO)
y W
a)darnalHA:l‘;t: SME cc ::,’: cC 8051 cC SME cc I(.UI:‘,:B?
= ff - T |
NOCIF 0 oc OFDM

ke

oufputport2

Lleti & List

og Mephisio !oc Demodul, ! o SME
(CFOJest)

: Mephisto cores

: Smart Memory Engine cores
: IP programmable cores

: Low power general controller
: CPU core (MAC support)

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 11

© CEA. Al rights reserved

Rappels Nexus4

m Face

(red) Toshiba THGBM5G6A2JBA1R 8GB Flash

(orange) SlimPort ANX7808 SlimPort Transmitter (HDMI output
converter)

(yellow) Invensense MPU-6050 Six-Axis (Gyro + Accelerometer)
(green) Qualcomm WTR1605L Seven-Band 4G LTE chip

(blue) Avago ACPM-7251 Quad-Band GSM/EDGE and Dual-Band
UMTS Powe Amplifier

(violet) 552908001

(black) Avago 3012 Ultra Low-Noise GNSS Front-End Module

n
Y]
V)
o
~

Samsung K3PEOEOOA 2GB RAM. We suspect the Snapdragon S4 Pro
1.5 GHz CPU lies underneath.

Qualcomm MDM9215M 4G GSM/CDMA modem

Qualcomm PM8921 Power Management

Broadcom 20793S NFC Controller

Avago A5702, A5704, A5505

Qualcomm WCD9310 audio codec

Qualcomm PM8821 Power Management

http://www.ifixit.com/Teardown/Nexus+4+Teardown/11781

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 12
& © CER. AT rignts rev

http://www.ifixit.com/Teardown/Nexus+4+Teardown/11781

Rappels Nexus4Compil
e o

m Application SDK :

m Java programming language

m Dalvik virtual machine

m Android Market / Google controled
m Native compilation

m Modem stack

m Native code
m Cross compiler
m Closed source

m System stack mostly opensource
Cyanogenmod build

m Virtual machine Cyanogenmod
m Building from source

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 13

http://wiki.cyanogenmod.org/wiki/Building_Kernel_from_source
http://www.cyanogenmod.org/
http://wiki.cyanogenmod.org/wiki/Building_from_source

Introduction : What's new in a processor ?

USADAS : not a “simple instruction”

Extract from an ARM databook
A8.6.254 USADAS8
Unsigned Sum of Absolute Differences and Accumulate performs four unsigned 8-bit subtractions, and
adds the absolute values of the differences to a 32-bit accumulate operand.
Encoding T1 ARMV6T2, ARMv7
USADA8<c> <Rd>,<Rn>,<Rm>, <Ra>
1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
|11111‘0110|lll‘ Rn H Ra | Rd |O

o
)
=)
z
]

if Ra == ‘1111’ then SEE USADS;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a == UInt(Ra);
if BadReg(d) || BadReg(n) || BadReg(m) || BadReg(a) then UNPREDICTABLE;

Encoding A1 ARMv6*, ARMV7

USADA8<c> <Rd>,<Rn>,<Rm>, <Ra>

313029282726252423222120191817161514 131211109 8 7 6 5 4 3 2 1 0
|c0nd ‘0111|000‘ Rd | Ra |Rm |0001| Rn |

if Ra == ‘1111’ then SEE USADS;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a == UInt(Ra);
ifd==15 || n==15 || m == 15 || a == 15 then UNPREDICTABLE;

v

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 14

All fights reserv

Illustration Video Compress

on | 2014 | 15

Data set modify performance application during run-time :

Using a FreeBOX (ADSL Modem and TV/IP broadcasting), my home
computer (Intel Celeron 1.70GHz) play correctly France3 (which use
MPEG TS video format) but cannot play RTL9 (X264 video format)
(2008 experiment)

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 16
CEA. Al ights reserved

Rappels Asm Language Classification / Addresses

Definition
» 0 address : all operators are implicit bytecode java (Java bytecode,
postscript)
» 1 address : A add (other operand implicits)
® 2 address : A += B (x86)
» 3 address : A = B + C (itanium)
m 4 address : A =B * C + D (power)

Compromise

m Code compacity, expressiveness

m “Simplicity” / efficiency

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 17
CEA. Al ights reserved

http://en.wikipedia.org/wiki/Java_bytecode

Rappels X86
e o

m One of the older architecture
m 78 Intel 8086 : 16 bits
m 82 Intel 80286 : 16 bits + MMU
m 85 Intel 386 : 32 bits
® http://www.intel.com
® http://en.wikipedia.org/wiki/X86_architecture
® http://www.x86-guide.com/
m Only specialized register
m Stack machine : why?
m 2 addresses instructions : DEST <- DEST op SRC : why?

What is the instruction PSADBW

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 18
CEA. Al ights reserved

http://www.intel.com
http://en.wikipedia.org/wiki/X86_architecture
http://www.x86-guide.com/

Rappels ARM

THUMB state

ARM state

RO

RO

R1

R1

R2

R2

R3

R3

R4

R4

RS

R5

R6

R6

R7

Stack Pointer (SP)
| Link Register (LR)

—_—
e

R9
R10
Ri1
R12
Stack Pointer (R13)
Link Register (R14)

Program Counter (PC)

—_—

R7 r
R8 B

[Program Counter (Ri5)|

CPSR

CPSR |

SPSR

SPSR |

Lo registers

Hi registers

The “multi ISA"” processor

= multimedia instruction set :
NEON

m 32 bits / 3 adresses (Ratio 2.6
= 32/12)

® 16 bits / 2 adresses Thumb
(Ratio 2.6 = 16/6)

m / 0 adresses Jazelle

Programming model (what s
USAD8?)

Registers number depend on the
programming model

parameter passaging depend on

instruction set :
m On stack

Code generation for Embedded Systems \PAﬁEEiBjé}siPar\%MVember 2014 | 19

MPSoC : Multiprocessor System on Chip
e o

http://en.wikipedia.org/wiki/System_on_a_chip

One single chip which contains

» IP blocks (Intellectual property). What's this ?
m FFT / Turbo code / ../..

m Processors

m Memory

Why ?
m IP : Save energy

Same chip : Save energy, ease integration

|
m Memory on chip : Save energy
]

Multiple processors : parallelism to ... save energy

y

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 20

http://en.wikipedia.org/wiki/System_on_a_chip

Rappels ISA
e o

Instruction Set Architecture
m Lowest programming Level model : assembly language

m Allow to use processor full capacity

m Special instructions (multimedia, vectors)
m Strange memory access

m Binary representation
m Register access

What is the “instruction execution algorithm” ?
Is the assembly language still used ?

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 21

Vocabulaire : Cycle par seconds / Flops

Units
Mips Million operation per second

Flops Floating point operation per second
http://www.top500.o0rg

Flops/Watt Floating point operation per watt per second
http://www.green500.org

IPC : Instructions per Cycle

How to mesure
» Analytique (wall clock)

®m Instrumentation

m “Portable” (gettimeofday())
m Hardware (hardware performance counter)

v

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 22
CEA. Al ights reserved

http://www.top500.org
http://www.green500.org

Vocabulaire Peak / Sustained

Notions

Peak performance : maximal theoretical performance, assuming no
bubble

Sustain performance : real acheived performance, on a real
benchmark

Cost
= What is the percentage you're ready to lose ? 90% 95% ?

= How many are you ready to pay (time, money) to minimise this loss?

http://www.top500.o0rg

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 23

http://www.top500.org

Vocabulaire Speedup

Notion
Speedup S = 100 * Tse"
Can be between
m 1 and N processor
m 1 and vectorized
m non optimized versus optimized version
Mesure Quality what are the execution conditions : data set, computer
workload, reproducibly,

Computer science has to use “human science” tools & methodology

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 24

m Moore http://en.wikipedia.org/wiki/Moore’s_law

» Amdahl http://en.wikipedia.org/wiki/Amdahl’s_law

= Memory bound http://en.wikipedia.org/wiki/I0_bound
m CPU bound http://en.wikipedia.org/wiki/CPU_bound

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 25

http://en.wikipedia.org/wiki/Moore's_law
http://en.wikipedia.org/wiki/Amdahl's_law
http://en.wikipedia.org/wiki/IO_bound
http://en.wikipedia.org/wiki/CPU_bound

Argumentation Illustration
The speedup of a program
using multiple processors in /’HH
parallel computing is limited ==]
by the sequential fraction of ™] i
the program. For example, if
95% of the program can be - an
parallelized, the theoretical e
maximum speedup using it tpcesr
J

parallel computing would be
20x as shown in the diagram,
no matter how many
processors are used.

v

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 26

Argumentation

Assume that a task has two independent parts, A and B. B takes roughly
25% of the time of the whole computation. By working very hard, one
may be able to make this part 5 times faster, but this only reduces the
time for the whole computation by a little. In contrast, one may need to
perform less work to make part A be twice as fast. This will make the
computation much faster than by optimizing part B, even though B's
speed-up is greater by ratio, (5x versus 2x)

Illustration

Two independent parts

Original process

Make B 5x faster

>
w

Make A 2x faster

y.
Code generation for Embedded Systems | DACLE Division | 26 November 2014 [27
CEA. All ights reserved

What are speed variation for this program ?

int i;
for (i=0; i <N; +4+i)
{
int j;
dest[i]= 0;

for (j=0; j <N; ++j)
dest[i] += src[j] = m[i][i];

Compiler, data size, target processor, available parallelism, data type,
memory location, operating system, ...

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 28
CEA. Al rights reserved

Les "temps” de compilation

Static time Dynamic time
Writing Compile Link Deploy Load Execute

_______________ 1
statlc compilation tlmew}

(
i
i
[\
! | \

: Object I QEMU JVM LLVM
l (A'gm'thm] l (file > LTo } :} Transmeta Dalvik Ocelot
i | i N4 I i ‘ R
: : GCC/CIang/Javac \: JIT tlme:
1 A] :\ |
| | |
[i
i i
i I
| |
[
i
i
i
[
i
i
|

|
6 Prog HCompller} [_EXE]—ﬁ-)[DeployH Load HExecutiorJ
anguage)

I

i

| |

Write/Gen :‘
]

***************** *C DyC o T
Tempo Fabius
deGoal

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 29

Rappels Static Compilation chain
e o

Static compilation (on C language) :
Preprocessor (all # stuff : rewriting)
Compilation (from C to textual assembly)
Assembly (from textual asm to binary asm)
Executable (binary + dynamic library)

cc -E
cc -S

cCc —-C

(Use gcc -v to see all the steps)
Don't stop at static time (Operating system + processor) :

Load in memory, dynamic linking

Branch resolution

Cache warmup

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 30
CEA. Al rghts reserved

Rappels ChaineCompil Tools
e o

Usefull tools / command line
m Preprocessor cc -E
m Compiler cc -S
m Assembler cc -c
m Static Executable cc
m Desassembly objdump -d
m Used librairy 1dd
m Used Function name nm |

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 31
< hts reserved

ghts reserves

Rappels Compilation Chain Debug
e o

Debug

m Add debuging information cc -g

m Name and variable address
m Line numbers

Could optimize but line number less usefull

Add backtrack information

Profiling information

Stack manipulation

Use gdb

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 32

Compilation Chain : Profile

Simple profiling Illustration

u Compile (use -pg) m gcc -o Profile
produce File : Profile.c -pg

= (Add code m ./Profile 20 10
instrumentation) m gprof Profile

» Run ./File produce Profile.gmon)
statistics

m Use gprof File)

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 33
CEA. Al ights reserved

Rappels ClassicalsCompilers

gcc Gnu C compiler http://gcc.gnu.org/
llvm/clang http://1lvm.org/
openb4 http://www.open64.net
sdcc Small device C compiler http://sdcc.sourceforge.net
tcc Tiny C Compiler http://bellard.org/tcc/
icc Intel C compiler x86 / Itanium
xlcc IBM compiler power / powerpc

oracle solaris sparc / x86

e

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 34

http://gcc.gnu.org/
http://llvm.org/
http://www.open64.net
http://sdcc.sourceforge.net
http://bellard.org/tcc/

Rappels Optimization
e o

Basic optimizations. How to
m Loop unrolling
m Cache reusing
m Vectorization

m What are the effects on :
m caches
m compiler
m speed

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 35
T hts reserved

ghts reserves

Rappels CSE Principe

Common Sub Expression
Elimination
m Remove common sub
expression
m Store intermediate value
m Reuse in the next
expressions

» Even invisible one (adress
computation)

[llustration
m Address computation
m Math expressions

m Warning : Not for
function calls!

See examples

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 36
< hts reserved

3nts reserve

Rappels LoopUnrollingPrincipe
e o

http://en.wikipedia.org/wiki/Loop_unwinding

Principe Benefice
m “Déplier” le corps d'une m Plus de code a optimiser
boucle N fois (CSE)
n m Moins de code de
branchement
= Réutilisation des caches |

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 37
< hts reserved

3nts reserve

http://en.wikipedia.org/wiki/Loop_unwinding

Boucle simple

for (i = 0; i < N; i++)
sum += a[i];

Boucle déroulée

for (i = 0; i < N; i+= UNROLL) {
sum += afi];
sum += a[i+1];
sum += a[i+UNROLL—1];

for (/« No init part x/; i <N % UNROLL; i++)
sum += a[i];

y
Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 38
TR erved

Rappels GCC Optimize
e o

A lot of optimization switches
» -O[0123s] Optimize more and more (s for space)

m -fxxx specific optimization exemple :
-funroll-loops This option makes code larger, and may
or may not make it run faster.
-ffast-math optimize but "it can result in incorrect
output for programs which depend on an exact
implementation of IEEE or ISO rules/specifications for
math functions."

m -mxxxx architecture specific optimization
-mthumb Generate code for the 16-bit Thumb instruction set

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 39
CEA. All ights reserved

Coursl HowToSyn

How to synchronize Hw development & Sw development

m Hardware development
m |IP assembling
m Place, route / Testing
m Software development
m Wait for HW
Wait for HW
Start to work on
Update

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 40

How to synchronize HW development with SW development :
m Spice : physical level
m SystemC : http://www.accellera.org/home/
m GEM5 : http://www.mbsim.org/
m SimpleScalar : old, but still used
m Qemu : fast but not HW accurate
m Other :

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 41
CEA. Al ights reserved

http://www.accellera.org/home/
http://www.m5sim.org/

Coursl Qemu
e o

QEMU is a generic and open source machine emulator and virtualizer

m System level : emulate a full system
m User level : emulate only one application

m TCG : tiny code generator
m KQEMU : get

Warning :
® http://wiki.qemu.org/Download Version : 1.3

m http://download.savannah.gnu.org/releases/qemu/ Version :
0.15

http://free.oszoo.org/wiki/index.php/Category:0S_images

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 42

http://wiki.qemu.org/Download
http://download.savannah.gnu.org/releases/qemu/
http://free.oszoo.org/wiki/index.php/Category:OS_images

Coursl Qemu at Work

Qemu do a “Binary Dynamic Translation”
m Take a block of instructions
m Translate it to new architecture
m Store in a buffer

m Run it

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 43
< hts reserved

3nts reserve

Coursl Build a Cross Compiler

® gcc

m Notion of triplet : cpu-vendor-os
m “by hand" :
m buildroot :
m Cross tool http://kegel.com/crosstool/
m /bin/ct-ng menuconfig
® /bin/ct-ng build

m clang : the easy way, based on LLVM

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 44
CEA. Al ights reserved

http://kegel.com/crosstool/

Coursl BootStrap a Compiler

How to compile a compiler?
A = native compiler, B = new compiler
m Build B1 with A
= Build B2 with B1
= Build B3 with B2
m Compare B2 and B3 for safety

Question : How was build the first compiler ?

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 45
CEA. Al ights reserved
T i B B

m Compile with a native compiler

m cc Hello.c -o Hello

m ./Hello

m Hello world

m file Hello

m Hello: ELF 64-bit LSB executable, x86-64, version 1

(8YSV), dynamically linked (uses shared libs), for
GNU/Linux 2.6.18, not stripped

m Compile with cross compiler

m arm-elf-eabi-gcc -o Hello Hello.c
m Run with emulator

® gemu-arm Hello

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 46
CEA. Al ights reserved

Motivation : Moving Optimization
e o

Designer

Programmer
Optimizer
User

Installation Static Link time
Idea Algorithm time Compilation Optimization Deployment Execution Data set

Transformations Phases

T e

Code
generation

Register
Allocation

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 47
& A All ights reserved

“Hash table"” : basic tool in compiler and object management

m Performance require an “efficient” hash function

m in speed
m in hashing quality

m a "perfect hashing” require data knowledge.

m “Perfect hash” tools require a data set and give an hash function

http://en.wikipedia.org/wiki/Perfect_hash_function
http://en.wikipedia.org/wiki/Dynamic_perfect_hashing

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 48

http://en.wikipedia.org/wiki/Perfect_hash_function
http://en.wikipedia.org/wiki/Dynamic_perfect_hashing

Cours2 DynGen
e o

Dynamic code generation

m Code generation done at run-time

m Architecture “independance”
m Binary size

m Oracle Java virtual machine contains “hotspot compiler”

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 49

Cours2 HotSpot
e o

HotSpot bytecode compiler
m Mix interpretation and compilaton
m At start do bytecode interpretation
m Count method invocation : detect “hotspots”
m Binary compile at a given thresold
|

Recompile and optimize if necessary

“Compilation on demand”

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 50
CEA. Al rghts reserved

Macro Assembly
e o

When Asm is mandatory
m Assembly programming
m Macro assembly Assembly preprocessing
m Example from X264
® http://www.videolan.org/developers/x264.html

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 51
< hts reserved

3nts reserve

http://fr.wikipedia.org/wiki/Assembleur##Macro-assembleur
http://www.videolan.org/developers/x264.html

The Fastest Fourier Transform of the West !

m Static compilation time

m Generate automatically many FFT codelets version
m Evaluate performances of each

® Run Time

m Decompose the problem in call of optimized codelets with a “plan”
m Use the same “plan” for all identical call

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 52

Atlas : library for linear algebra compuation

m Static code
m Many different versions
m Test & optimize theses versions

m Find the best version on a given platform

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 53

Binary code generation
m Data value, data size are main parameters
m Instruction set can be choosen at run-time

m At “data value time” we could adapt the binary code

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 54
< hts reserved

ghts reserves

JavaScript JIT
e o

Javascript Jit Compilation

Scripting language m Mandatory for modern
application (google doc,
web applications)

No strong type

| |
m Used in web browser
. m JIT compilation

In charge of
m Local interaction m Many concurrent projects
= Refresh page without (Mozilla, chrome, IE)
full reload ’
m Local Graphic My favorite demo : http:
Computation //bellard.org/jslinux/
m ./

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 55

http://bellard.org/jslinux/
http://bellard.org/jslinux/

Java programming language Jit compilation
» Compiled language (95') = Multiple JVM vendors
= Normalized m Mix between
» Server side applications interp.retation & JIT
» JIT Compilation (no HW Sompl

iteraction)
= Object oriented
m Strong data type

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 56
ved

CEA. All rights rese

Thesis Subjects
e o

Interested to work in this domain ?
Thesis subjects
m How to Build auto-adaptive libraries ?
m How to embed binary code generator in Java applications?

m What is an operating system if the ram is permanent ?

mailto:Henri-Pierre.Charles@cea.fr

Code generation for Embedded Systems | DACLE Division | 26 November 2014 | 57

mailto:Henri-Pierre.Charles@cea.fr

	Introduction / Architecture
	Introduction Plan / Deal
	Introduction Abstract
	Introduction Questions
	Introduction Intro
	Texas Msp430
	Introduction Raspberry
	ARM big.LITTLE
	Nvidia Four Plus One
	Architecture GreenNet
	Introduction MPSoC Magali
	Rappels Nexus4
	Rappels Nexus4Compil
	Introduction : What's new in a processor ?
	Intro Multimedia SAD
	The ``Titanic'' effect

	Vocabulary / Notions
	Rappels Asm Language Classification / Addresses
	Rappels X86
	Rappels ARM
	MPSoC : Multiprocessor System on Chip
	Rappels ISA
	Vocabulaire : Cycle par seconds / Flops
	Vocabulaire Peak / Sustained
	Vocabulaire Speedup
	Vocabulaire Lois
	Vocabulaire Amdahl
	Amdahl2

