UNIVERSITE
'~ Grenoble

(3

4 Alpes

Programming-Language Semantics
and Compiler Design

/

Sémantique des Langages

de Programmation et Compilation

Tutorials / Travaux Dirigés (Part 2)

Univ. Grenoble Alpes — UFR IM?AG

Master of Science in Informatics at Grenoble (MoSIG)
Master 1 informatique (M1 info)

Academic Year 2024 - 2025

UN1v. GRENOBLE ALPES 2 Master 1 (MoSIG and informatique)

CONTENTS

1 Semantic Analysis - Typing 5
2 Intermediate-Code Optimization using Data-flow Analysis 11
2.1 Defined and Used variables L 11
2.1.1 Defining assigned and used variables in statements 11

2.1.2 Adding an operator || for parallel execution 11

2.2 Preliminaries e e 12
2.2.1 Lattice, recursive equations, fix-points 12

2.2.2 Control-flow Graph (CFG) 13

2.3 Available Expressions L 13
2.4 Live Variables L e 14
2.5 Constant Propagation L e 15

CONTENTS

UN1v. GRENOBLE ALPES 4 Master 1 (MoSIG and informatique)

SERIES
ONE

SEMANTIC ANALYSIS - TYPING

Exercise 1 — Program correctly typed or not?

Consider the environment I' = [z — Int, 25 — Int,x3 — Bool]. Indicate whether the following programs
are correctly typed or not.

1. Program 1: 2. Program 2:
T :=3*xx1 + 1;
T = 3; if z9 and -3 then
while —x3 do T =x9+1
T :=x0 + 1; else
T3 := xr3 and true T 1= To;
od fi
Exercise 2 — Adding a typing rule for a new construct

We are interested in the construct/expression “a; ? as : a3” which is available in C or Java. The informal

semantics of this construct is as follows: if a; is true then the value of this expression is as else the value
is as.
1. Complete the abstract syntax of expressions to support this construct.

2. Give typing rules for this construct.

Exercise 3 — Introducing floats and type conversion

We want to add the type Float to the While language.

1. Complete the abstract syntax and the type system to support the type Float where no conversion
is allowed between Int and Float.

2. Complete the type system to allow implicit conversion from Int to Float.

Complete the abstract syntax and the type system to allow the explicit conversion from Int to
Float through an appropriate Int2Float type conversion operator.

Exercise 4 — Other forms of variable declarations
Modify the type system seen in the course when variable declarations can take the following additional
forms:.

1. Initialized un-typed variables: var z := e

2. Initialized typed variables: var x := e : t

SERIES 1. SEMANTIC ANALYSIS - TYPING

Exercise 5 — Collateral evalution of declarations

Consider the sequence of initialized and un-typed variable declarations.

Dy = var xq1 := 3;var x5 := 2% x1 + 1;var x3 := true

1. Compute the resulting environment by updating an empty environment I'yy = [] with Dy using
sequential evaluation.

2. We now propose a so-called collateral way of evaluating a list of variable declaration Dy, where
each declaration is considered in isolation, without taking into account the previous ones in the
list!.

e Give the corresponding typing rules.

e Using these rules compute the resulting environment by updating an empty environment I'y
with Dy using collateral evaluation.

e Some question where I'y = [z — Int].

Exercise 6 — Typing rules for the for and repeat constructs

We add two new statements to the While language (introduced in the lecture session):
e a “repeat” statement: repeat S until b

e a “for” statement: for x from e; to es do S

1. Give the typing rule(s) associated to the “repeat” statement.
2. Give the typing rule(s) associated to the “for” statement. You will distinguish between two cases:
e the “for” statement declares the variable x like in Ada or Java), the scope of this new variable
is S ;
e the “for” statement does not declare the variable x and therefore x has to exist in the current
environment.

Exercise 7 — Procedures without parameters

We consider the three programs below. Applying the rules, determine the variable environment at
observation points (1) and (2).

C1 global x:Int, y:Int in
proc swap_x_y var t:Int in
/x (1) */
end
/* (2) */

swap_x_y

C2 global x:Int, y:Int, t:int in
proc swap_x_y var x:Int, y:Int in
/x (1) */
end
/% (2) */

sSwap_x_y

C3 global x:Bool, y;Bool in
proc swap_x_y var x:int, y:Int, t:Int in

/x (1) */
end
/% (2) */
swap_xX_y
IRk: this variant corresponds for instance to the CAML construct let x=... and y=... in ...

UNIv. GRENOBLE ALPES 6 Master 1 (MoSIG and informatique)

SERIES 1. SEMANTIC ANALYSIS - TYPING

Exercise 8 — (Mutually-)recursive procedures

We consider the two following sequences of procedure declarations D1 and D2:

D1= D2=
proc p is call p end proc pl is call p2 end ;
proc p2 is call pl end ;

1. Show that, with the type system defined in the lecture, these declarations are incorrect when
starting from an empty procedure environment.

2. Modify this type system to take into account such (mutually) recursive procedures. Verify that
these programs are now correct with the new type system.
Clue. Each sequence of procedure declaration should be analyzed twice: a first time to build its
associated local environment, and a second time to check its correctness with respect to this local
environment.

Exercise 9 — Correctly-initialized variables

A variable is said to be correctly initialized if it is never used before being assigned with an expression
containing only correctly initialized variables. Let us consider for instance the following program:

x:=0;y:=2+x;z:=y+t;u:==1;u:=w;v:=v+l ;
In this program:
e x and y are correctly initialized ;

e z is not correctly initialized (because t is not correctly initialized); u is not correctly initialized
(because w is not correctly initialized); and v is not correctly initialized (because v is not correctly
initialized).

Some compilers, such as javac, reject at compile-time programs that contain non-correctly initialized
variables. We want to define in this exercise a type system which formalizes this check. To do so, we
consider the following judgments:

e an environment is simply a set V' of correctly initialized variables;

e V| e means that “in the environment V', expression e is correct (it does not contain non correctly
initialized variables)”;

V S | V/ means that “in the environment V, statement S is correct and produces the new
environment V' 7.

Give the corresponding type system for the While language (without procedures).

2. Apply the type system to the following code snippet, using I' = () :
a)r:=1;if x=0theny:=z+1lelsey:=xz—1fi
b)z:=1;if r=0thenz:=x+1elsey:=x—1 fi,
c)xz:=1; whilex <10doy:=z+y;x:=x+ 1.
3. Show (on an example) that, similarly to javac, your type system may reject programs that would
be correct at run-time.

4. Another option would be to perform this check at runtime, as it could be the case for instance in
Python. Propose an extension of the (natural) operationnal semantics of the Whilelanguage
to take into account this dymanic typing rule.

Indication: you can extend the statement configurations with a new element I where I is the set
of initialized variables at each program location.

5. Check that the program rejected by static typing is now no longer rejected . ..

Academic Year 2019 - 2020 7 PLCD / SLPC — Tutorials / TD

SERIES 1. SEMANTIC ANALYSIS - TYPING

Exercise 10 — Procedures with parameters

Using the rules seen during the lectures, check the type correctness of the two following programs:

global r:Int, x:Int in
proc add_r(x:Int, y;Int) is var s:Int in s:=x+y ; r:=s end
add_r(x,x+2)

global r:Int in
proc foo (x:Int) is var x:Bool in r:=x+1 ;
foo(x)

Exercise 11 — Considering functions
We extend language Proc to handle procedures that return value, aka functions. This entails that functions
can be called within expressions.

1. Extend the abstract grammar of While.

2. Extend the type system of While accordingly.

Exercise 12 — input/output parameters to procedures in the type system
We aim at extending the While language to consider input and/or output parameters for procedures. We
shall proceed in several steps.
1. Consider only in parameters.
2. Consider only out parameters.
3. Consider both in and out parameters.
4. Take into account the extra rule (inspired from the Ada language), stating that:
e out parameters cannot appear in right-hand side of an assignment;
e in parameters cannot appear in left-hand side of an assignment.

5. Show that, in this last case, your type system may reject correct programs because of this rule.
How could you solve this problem?

Exercise 13 — Sub-typing and dynamic types

We extend language While by introducing the notion of sub-typing through the following syntax for blocks,
where ¢ is a type identifier and extends means “is a sub-type of” (like in Java):

S = ---|begin Dy ; Dy ; S end
Dy = typetextends Br;Dr |e
Br == Top |Int |Bool |t

We aim to define a type system for this language which reflects the usual notion of sub-typing, namely:

e The sub-typing relation is a partial order C whose greatest element is Top. It can be formalized by
a type hierarchy (X, C), where X is a set of declared types (including the predefined types Top, Int
and Bool).

e A value of type ty can be assigned to a variable of type t; whenever to C ¢1. The converse is false.

1. Propose a type system which takes these rules into account. Judgments could be of the form:
e (X,0),T'F S, meaning that “in the environment I' and with the type hierarchy (X, C), the
statement S is well-typed” ;

¢ (X,C), ' e: ¢, meaning that “in the environment I'" and with the type hierarchy (X, C),
the expression e is well-typed and of type t” ;

e (X,C) F Dr | (X/,CC'), meaning that “type declaration Dt is correct within the type
hierarchy (X, C) and produces the type hierarchy (X', /)7 ;

UNIv. GRENOBLE ALPES 8 Master 1 (MoSIG and informatique)

SERIES 1. SEMANTIC ANALYSIS - TYPING

¢ (X,C), ' Dy | I'}, meaning that “in the environment I' and with the type hierarchy (X, C),
the variable declaration Dy is correct and produces the environment I';”.

2. Show that the following program is rejected by your type system:
begin
type t extends Int ;
var x1 : Int ;
var x2 : t ;
var x3 : Int ;

x1l := x2 ;
x3 := x1 ;
x2 := x3

end

3. This question requires to be familiar with the natural operational semantics of While. Although
rejected by your type system, the previous program is perfectly safe (it does not violate the informal
sub-typing rules). However, its correctness can only be ensured at run-time, by introducing a
notion of dynamic type to each identifier. This dynamic type corresponds to the actual type value
held by this identifier at each program step (contrarily to the static type, the one declared for this
variable).

Rewrite the (natural) operational semantics of the While language to take into account this notion
of dynamic type and perform the type-checking at run-time. You can extend the configurations
with a (dynamic) environment p which associates its dynamic type to each identifier.

Academic Year 2019 - 2020 9 PLCD / SLPC — Tutorials / TD

SERIES 1. SEMANTIC ANALYSIS - TYPING

UN1v. GRENOBLE ALPES 10 Master 1 (MoSIG and informatique)

SERIES
TWO

INTERMEDIATE-CODE OPTIMIZATION USING DATA-FLOW
ANALYSIS

2.1 Defined and Used variables

We recall the syntax of the While language:

S = wx:=alskip|S;S|if bthen S else S |whilebdo S
a = nlz|lata
b = true|false|a=ala<a|-b|bAD

2.1.1 Defining assigned and used variables in statements

We want to define the functions Def and Use which associate, to each syntactic construct, the set of
assigned and used variables respectively. Assigned variables are the variables appearing in the left-hand
side of an assignment. Used variables are the variables appearing on the right-hand side of assignments
or in expressions.

Exercise 14 — A formal definition of Def and Use

We want to define formally functions Def and Use.
1. What is the signature of these functions?

2. Consider conditional statements built using the if ... then S; else Sy fi construct. What are
the possible situations (in terms of definition and use) for a variable depending on Sy and Sy?

3. Based on the observation made in the previous question, one needs two definitions of the Def and
Use functions. Give formal definitions for these functions.

Exercise 15 — Applying Def and Use

1. Apply functions Def and Use to: if a <bthenc:=d—yelsey:=e—x fi.

2.1.2 Adding an operator || for parallel execution

We extend the syntax of statements in the following way:

Su=---|5]S.

Exercise 16 — Parallelism in Natural Operational Semantics

We consider operator || for parallelizing statements.
1. Recall the natural operational semantics of this operator.

In the following, we consider the While language extended with the || operator and its natural operational
semantics.

11

SERIES 2. INTERMEDIATE-CODE OPTIMIZATION USING DATA-FLOW ANALYSIS

Exercise 17 — Applying the parallelism operator

Applying natural operational semantics rules extended with the rules for ||, compute the obtained state(s)
by executing the following commands on the initial state g = [z — 1,y — 1].

l.a=z+1||y=y+1
2. x:=y+1fly=a+2

Exercise 18 — A sufficient condition so that parallelism does not influence computa-
tion

Give a sufficient condition such that the two previously defined rules yield the same result. That is, when
we evaluate Sp || S2 in a state o, then the obtained state o9 is independent of the order of evaluation of
Sl and SQ.

Hint: One can use the functions Def and Use, previously defined.

Exercise 19

Propose a unique semantic rule that evaluates Sy || Se on the state o. This rules should propose an
evaluation of S7 and Sy on state o supposing that the previous condition holds.

Exercise 20

1. Apply the previously defined semantic rules to the statement in Exercise 17.

2.2 Preliminaries

2.2.1 Lattice, recursive equations, fix-points

Exercise 21

We consider set £ = {a, b, c}.
1. Draw the lattice (2, C), where 2¥ denotes the powerset of E.

2. For each of the following subsets of E, indicate whether it contains a maximum or not, what is the
set of its upper-bounds, what is its least upper bound (when it exists).

L. {{a},{b}}

2. {{a,b},{b,c},{a,c}}

3. {{a,b},{b,c},{a,c}, {a,b,c}}
4. 2F

Exercise 22

For a set X endowed with an order relation <, we say that function f is monotonic if Vz,y: 2 <y —
f(z) < f(y). We consider the following functions:

e “complement” function: F1(z) = 2{ebch\ ¢

e “union with {b,c}” function: Fp(x) =z U {b,c}

e “intersection with {b, c}” function: F5(z) =z N {b,c}
e function Fy = F3o0 F5.

1. Indicate which functions are monotonic on (2{®¢} C).
2. We are now interested in recursive equations of the form X = F(X) defined on (2{**<} C). Give
(without proof) the set of solutions of these equations for Fy, Fy, F3 and Fj.

3. Compute the least solution (i.e., the least fix-point) of equation X = F(X) by successively
computing Fs(. .. Fa(F»(0))).

UNIv. GRENOBLE ALPES 12 Master 1 (MoSIG and informatique)

SERIES 2. INTERMEDIATE-CODE OPTIMIZATION USING DATA-FLOW ANALYSIS

4. Compute the greatest solution (i.e., the greatest fix-point) of equation X = F3(X) by successively
computing F3(... F3(F3({a,b.c}))).
5. Are the computations possible for equation X = Fy(X)? And for equation X = F}(X)?

2.2.2 Control-flow Graph (CFG)

Exercise 23

1. Draw the CFG of the following program.
x =3 ;
while (x < 10) {
y = x+1 ;
if (y<5) {
Z = 2%x
y :=y-1;
}
else {
z =y +1
}

X

x+1 ;
}
y =y +z;
Exercise 24

We consider the following 3-address code sequence:

1. a :=1

2. b :=2

3. e := atb

4. d :=c-a

5. if a+b>0 goto 11
6. d := bxd

7. goto 8

8. d := atb

9. e := e+l

10. goto 3

11. b := atb

12. e := c-a

13. if ¢ > 3 goto 3
14. ¢ := atb

15. b := a-d

end

1. Split this sequence into basic blocks, and draw the resulting control flow graph.

2.3 Available Expressions

Exercise 25

We consider the program in Exercise 24 and its CFG.
1. Give the set of data-flow equations for computing available expressions.
2. Solve these equations.

3. Suppress redundant computations.

Academic Year 2019 - 2020 13 PLCD / SLPC — Tutorials / TD

SERIES 2. INTERMEDIATE-CODE OPTIMIZATION USING DATA-FLOW ANALYSIS

(B1)
tl :=m - 1; (el)
t2 :=m + n; (e2)

k :=a+ 1; (e3)
a := ul; (ed)
e := 2 % c; (eb)

(B2)

b :=2 x c; (eb)
tl := t1 + 1; (eB)
t2 = t2 - 1; (e7)
d > a + 1 (el3)

[\

(B3) (B4)

a := u2; (e8) tl :=m - 1; (el)
d :=2 % c; (eb) b := 2 * c; (eb)
n :=n +m; (e2) =a+1; (e3)

i(B1)

i :=m-1;

j = n;

tl := 4x*n;

v := al[tl];

|

(B2)

i = i+l

t2 := 4%i

t3 := a[t2]

£t3 >= alt1]

|

(B3)

j =5

alt2] := m-1

i< j-1
(B4)
t7 := al[ti] (B5)
t8 := m-1 t10 := 4x*i
t9 = 4%i t11 := a[t4]

Figure 2.1: CFGs for Exercise 26

Exercise 26
For each of the CFGs in Figure 2.1:

1. Give the set of data-flow equations for computing available expressions.

2. Solve these equations.

3. Suppress redundant computations.

Exercise 27

Suppress redundant computations in the following program:

a:=5
c :=1
L1: if c>a goto L2
c := ctc
goto L1
L2: a:= c-a
c:=0

2.4 Live Variables

UNIV. GRENOBLE ALPES 14

Master 1 (MoSIG and informatique)

SERIES 2. INTERMEDIATE-CODE OPTIMIZATION USING DATA-FLOW ANALYSIS

i :=m-1;
a := 0; a := 0;
j = n;
a := ul; l l
I b := atil b := atil
-] c := ctb c :=b
l. T l.+1 = bx*2 a := bx*2
j =31
/ a<N a<N
a = u2; i := u3;
return(b) return(b)

Figure 2.2: CFGs for Exercise 29

Exercise 28

We consider the following program:

while d>0 do {

a := b+c
d := d-b
e := atf
if e>0
{f := a-d ; b := d+f}
else
{e := a-c}
b := atc
}
1. Write the 3-address code sequence corresponding to this program.
2. Split this sequence into basic blocks, and draw the resulting control flow graph.
3. Give the set of data-flow equations for computing live variables.
4. Solve these equations.
5. Suppress useless assignments.

Exercise 29

For each of the CFGs depicted in Fig. 2.2 (obtained after some intermediate code generation):
1. Give the set of data-flow equations for computing live variables.
2. Solve these equations.

3. Suppress useless assignments.

2.5 Constant Propagation

Exercise 30

We consider the CFGs in Figure 2.3.
1. Modify these CFGs by performing constant propagation.

Exercise 31

Academic Year 2019 - 2020 15 PLCD / SLPC — Tutorials / TD

SERIES 2. INTERMEDIATE-CODE OPTIMIZATION USING DATA-FLOW ANALYSIS

1= xty;

X = Z;

N\

vd

Xy

= X7y,

X = Z;

N

X+y;

e

t:i=z+x; t:=z+x;
Figure 2.3: CFGs for Exercise 30
= 4; 5
= 0; s
S.I =4
i = 0;
X =y
N
x <y
Z = X; \
t = z+y;
ii= i+ yimyme TR

Figure 2.4: CFGs for Exercise 31

We consider the CFGs in Figure 2.4.
1. Modify these CFGs by performing constant propagation.

UN1v. GRENOBLE ALPES 16 Master 1 (MoSIG and informatique)

	1 Semantic Analysis - Typing
	2 Intermediate-Code Optimization using Data-flow Analysis
	2.1 Defined and Used variables
	2.1.1 Defining assigned and used variables in statements
	2.1.2 Adding an operator for parallel execution

	2.2 Preliminaries
	2.2.1 Lattice, recursive equations, fix-points
	2.2.2 Control-flow Graph (CFG)

	2.3 Available Expressions
	2.4 Live Variables
	2.5 Constant Propagation

