

Three-Address Code

● Or “TAC”
● The IR that you will be using for the final

programming project.
● High-level assembly where each

operation has at most three operands.
● Uses explicit runtime stack for function

calls.
● Uses vtables for dynamic dispatch.

Sample TAC Code

int x;
int y;

int x2 = x * x;
int y2 = y * y;
int r2 = x2 + y2;

Sample TAC Code

int x;
int y;

int x2 = x * x;
int y2 = y * y;
int r2 = x2 + y2;

x2 = x * x;
y2 = y * y;
r2 = x2 + y2;

Sample TAC Code

int a;
int b;
int c;
int d;

a = b + c + d;
b = a * a + b * b;

Sample TAC Code

int a;
int b;
int c;
int d;

a = b + c + d;
b = a * a + b * b;

_t0 = b + c;
a = _t0 + d;
_t1 = a * a;
_t2 = b * b;
b = _t1 + _t2;

Sample TAC Code

int a;
int b;
int c;
int d;

a = b + c + d;
b = a * a + b * b;

_t0 = b + c;
a = _t0 + d;
_t1 = a * a;
_t2 = b * b;
b = _t1 + _t2;

Temporary Variables

● The “three” in “three-address code”
refers to the number of operands in any
instruction.

● Evaluating an expression with more than
three subexpressions requires the
introduction of temporary variables.

● This is actually a lot easier than you
might think; we'll see how to do it later
on.

Sample TAC Code

int a;
int b;

a = 5 + 2 * b;

Sample TAC Code

int a;
int b;

a = 5 + 2 * b;

_t0 = 5;
_t1 = 2 * b;
a = _t0 + _t1;

Sample TAC Code

int a;
int b;

a = 5 + 2 * b;

_t0 = 5;
_t1 = 2 * b;
a = _t0 + _t1;

TAC allows for
instructions with two

operands.

Simple TAC Instructions

● Variable assignment allows assignments of the
form
● var = constant;

● var1 = var2;

● var
1
 = var

2
 op var

3
;

● var
1
 = constant op var

2
;

● var1 = var2 op constant;

● var = constant
1
 op constant

2
;

● Permitted operators are +, -, *, /, %.

● How would you compile y = -x; ?

Simple TAC Instructions

● Variable assignment allows assignments of the
form
● var = constant;

● var1 = var2;

● var
1
 = var

2
 op var

3
;

● var
1
 = constant op var

2
;

● var1 = var2 op constant;

● var = constant
1
 op constant

2
;

● Permitted operators are +, -, *, /, %.

● How would you compile y = -x; ?

y = 0 – x; y = -1 * x;

One More with bools

int x;
int y;
bool b1;
bool b2;
bool b3;

b1 = x + x < y
b2 = x + x == y
b3 = x + x > y

One More with bools

int x;
int y;
bool b1;
bool b2;
bool b3;

b1 = x + x < y
b2 = x + x == y
b3 = x + x > y

_t0 = x + x;
_t1 = y;
b1 = _t0 < _t1;

_t2 = x + x;
_t3 = y;
b2 = _t2 == _t3;

_t4 = x + x;
_t5 = y;
b3 = _t5 < _t4;

TAC with bools

● Boolean variables are represented as
integers that have zero or nonzero
values.

● In addition to the arithmetic operator,
TAC supports <, ==, ||, and &&.

● How might you compile b = (x <= y) ?

TAC with bools

● Boolean variables are represented as
integers that have zero or nonzero
values.

● In addition to the arithmetic operator,
TAC supports <, ==, ||, and &&.

● How might you compile b = (x <= y) ?
_t0 = x < y;
_t1 = x == y;
b = _t0 || _t1;

Control Flow Statements

int x;
int y;
int z;

if (x < y)
 z = x;
else
 z = y;

z = z * z;

Control Flow Statements

int x;
int y;
int z;

if (x < y)
 z = x;
else
 z = y;

z = z * z;

 _t0 = x < y;
 IfZ _t0 Goto _L0;
 z = x;
 Goto _L1;
_L0:
 z = y;
_L1:
 z = z * z;

Control Flow Statements

int x;
int y;
int z;

if (x < y)
 z = x;
else
 z = y;

z = z * z;

 _t0 = x < y;
 IfZ _t0 Goto _L0;
 z = x;
 Goto _L1;
_L0:
 z = y;
_L1:
 z = z * z;

Control Flow Statements

int x;
int y;
int z;

if (x < y)
 z = x;
else
 z = y;

z = z * z;

 _t0 = x < y;
 IfZ _t0 Goto _L0;
 z = x;
 Goto _L1;
_L0:
 z = y;
_L1:
 z = z * z;

Labels

● TAC allows for named labels indicating
particular points in the code that can be
jumped to.

● There are two control flow instructions:
● Goto label;
● IfZ value Goto label;

● Note that IfZ is always paired with Goto.

Control Flow Statements

int x;
int y;

while (x < y) {
 x = x * 2;
}

y = x;

Control Flow Statements

int x;
int y;

while (x < y) {
 x = x * 2;
}

y = x;

_L0:
 _t0 = x < y;
 IfZ _t0 Goto _L1;
 x = x * 2;
 Goto _L0;
_L1:
 y = x;

