
Ensimag UGA
Master CybserSecurity Year 2025-26

Software Security & Secure Programming

Lab session 1 : language security weaknesses

Before you start :

— You can work either on your own laptop or on an Ensimag (Ubuntu) machine . . .
— Copy the tar file

https://im2ag-moodle.univ-grenoble-alpes.fr/mod/resource/view.php?id=31988

and untar it into a directory of your choice . . .
— There are numerous exercices, you are expected to do at least 2 exercises from Part 1

and one exercise from Part 2, and to write a report including both :
— your detailed answers for these 3 exercices ;
— a short explanation about the problem raised and the solution proposed for one of the

sub-rules of rules 04, 06, 08 of 12 from the web site
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

— This report should be uploaded on the Moodle course page 1 before October the 21st. It
should be written by group of 2 students (“binôme”).

— Parts of this lab consist in discovering security features (vulnerabilities, protections, tools)
which may have not yet been seen during the course. This is a deliberate choice, we will
came back to that in the next lectures . . .

1. https://im2ag-moodle.univ-grenoble-alpes.fr/mod/assign/view.php?id=36469

1

https://im2ag-moodle.univ-grenoble-alpes.fr/mod/resource/view.php?id=31988
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
https://im2ag-moodle.univ-grenoble-alpes.fr/mod/assign/view.php?id=36469


Part 1

Exercise 1 Optimise (arithmetic overflow)

Look at the source code of optimise.c.

1. Compile it, execute it and explain the result obtained in each following case :

no option :
gcc -o optimise1 optimise.c

optimisation option :
gcc -O2 -o optimise2 optimise.c 2

overflow detection option :
gcc -fno-strict-overflow -o optimise3 optimise.c

optimisation and overflow detection option :
gcc -O2 -fno-strict-overflow -o optimise4 optimise.c

(Look at the gcc manual to know the meaning of -O2 and -fno-strict-overflow 3 . . .).

2. Propose a solution to make this code secure whatever are the options used to compile it. You
can use the following rule : https://www.securecoding.cert.org/confluence/display/
c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow

Exercise 2 WinLoose (buffer overflow)

Look at the source code of the C program winloose.c. This program takes as input two integer
arguments on the command line (argv[1] and argv[2]).

1. Compile this programm with gcc using the following command :
gcc -fno-stack-protector -o winloose winloose.c

(Have a look at the gcc manual to know the meaning of -fno-stack-protector . . .).

Execute it with some random arguments :

./winloose 5 10

./winloose 2 17

etc.

This program may leed to several possible results :
— print "You loose"

— infinite loop
— crash
— etc.

2. Explain each different result you get, “guessing” the execution stack layout. In particular
try to find a program input allowing to print "You win" !

2. if you see the same behavior than in the previous case you should add -fstrict-overflow to this command
3. and -fstrict-overflow in case you used it

2

https://www.securecoding.cert.org/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow
https://www.securecoding.cert.org/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow


3. You can confirm and/or complete your results for the previous question by retrieving the
actual stack layout from the executable code produced by the compiler. This can be done
in several ways, e.g. :
— using a decompiler, like Ghidra (available on the Ensimag machine, instructions are avai-

lable here)
— using a disassembler, like objdump

— using a debugger, like gdb

4.

5. Compile now the C program winloose.c with and without the “stack protection” enabled :
gcc -fstack-protector -o winloose-protected winloose.c

gcc -fno-stack-protector -o winloose-unprotected winloose.c

What do you obtain now when running these executable codes with the inputs you provided
for question 1 ?

6. Disassemble or decompile the protected program using objdump or Ghidra.

Look at the assembly (or decompiled) code of function <main> to retrieve how the stack
protection mechanism is implemented.

Exercise 3 ExecShell (input sanitization, use-after-free)

Look at the source code of the C program exec shell.c. This program takes as input one directory
name and prints its content (like the ls command).

Compile this program with gcc : gcc -o exec shell exec shell.c

Run it : ./exec shell /tmp

If the argument string is too long, then an error message is printed and the user is requested to
enter a character string.

1. Explain why this program is vulnerable.

2. Find how you can use this program to execute any shell command of your choice (e.g,
/bin/sh, xcalc, etc.) using the two following attack patterns :

1. shell command injection

2. use-after-free vulnerability

Exercise 4 Path traversal (input sanitization)

The file path traversal.java contains a Java program allowing to print the content of a user
profil file on a (fictive) Linux filesystem those root is myroot.

Compile this program (javac path traversal.java)

We assume the following attacker model :

3

https://im2ag-moodle.univ-grenoble-alpes.fr/pluginfile.php/69164/course/section/10498/UsingGhidra.pdf


— myroot is remote and can only be accessed by users through this Java program ;
— the source code of path traversal.java is not available to users, and it cannot neither be

easily reversed.

1. As an “attacker”, run java path traversal

— first, without argument ;
— then, with a random argument (for instance your login name).
What do you learn ?

2. According to the structure of a Linux filesystem you know that the “password file” is stored
in /etc/passwd. How can you use path traversal.class to print the content of this file ?

Have a look at https://cwe.mitre.org/data/definitions/34.html . . .

3. As a developper, how could you improve the code of path traversal.java in order to
prevent this attack ? Several solutions can be considered :
— define bounds for expected string (like OVH and free for accounts’ password on their

manager) so the number of check to do on the input string could be easily defined (have
a look at filesystems constants for this)

— (properly) sanitize input string
— have a look at

http://en.wikipedia.org/wiki/Directory_traversal_attack

http://cwe.mitre.org/data/definitions/22.html

Exercise 5 A DoS attack ! (input sanitization)

The (simple !) program integers-sum.c expects a sequence of integer values from the user (ending
by −1) and prints the sum of the received input (expected −1). However, there is a (simple !) way -
as a regular user - to make it entering an infinite loop, leading to Denial-of-Service (DoS) attack.

1. compile and run this code with regular input sequences to check that it works well under
nominal conditions.

2. find the way to trigger this attack (clue : you simply need to enter some simple unexpected
input, using a very basic fuzzing technique).

3. explain the vulnerability, and where it does come from.

4. propose a more secure version of this code, preventing the former attack.

Exercise 6 Exploiting a Use-After-Free (use-after-free)

The objective of this exercise is to show how a use-after-free vulnerability can be exploited by an
attacker to get an arbitrary code execution. The commands to be executed in the following questions
can be copy-pasted from the file exploit-uaf2.txt.

1. Have a look at the file uaf2.c to spot the use-after-free.
Compile this file using option -z execstack to set the stack as “executable” (which is not

4

https://cwe.mitre.org/data/definitions/34.html
http://en.wikipedia.org/wiki/Directory_traversal_attack
http://cwe.mitre.org/data/definitions/22.html


a default option).

gcc -z execstack -o uaf2 uaf2.c

2. What do you obtain when executing the following command : ./uaf2 foo

Explain why you get this result . . .

3. Execution of uaf2 can be hijacked by an attacker and may lead to an arbitrary code execution
by giving as input a sequence of processor instructions (called a shellcode). An example of
such a shellcode allowing to open a shell under Linux x86/64 is given for instance here :
https://www.exploit-db.com/exploits/46907.

Run uaf2 with this shellcode a command line argument (see file exploit-uaf2.txt).

4. Re-compile now your code using Adress-Sanitizer in order to enforce memory safety :

gcc -g -fsanitize=address -z execstack -o uaf2 uaf2.c

Check that the previous “exploit” does not work anymore . . .

Part 2

See this file . . .

5

https://www.exploit-db.com/exploits/46907
https://im2ag-moodle.univ-grenoble-alpes.fr/mod/resource/view.php?id=36449

